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In this document, we first present additional quantita-
tive results on Cityscapes val (c¢f §A). Then, we con-
duct an empirical analysis of our contrastive loss against
other semantic segmentation loss designs (cf. §B). Last, we
provide more qualitative semantic segmentation results on
Cityscapes val [7], PASCAL-Context test [12], COCO-
Stuff test [3], and CamVid test [2] (cf. §C).

A. Additional Quantitative Result

Table 1 provides comparison results with representa-
tive approaches on Cityscapes val [7] in terms of mloU
and training speed. We train our models on Cityscapes
train for 80,000 iterations with a mini-batch size of 8.
We find that, by equipping with cross-image pixel contrast,
the performance of baseline models enjoy consistently im-
provements (1.2/1.1/0.8 points gain over DeepLabV3, HR-
NetV2 and OCR, respectively). We also carry out extra
experiments over lightweight backbones (i.e., MobileNet
V1/V2/V3) for DeepLab V3. All the models are trained
for 80,000 iterations with a mini-batch size of 16. As
seen, our method also at- tains consistent improvements
on lightweight backbones. In addition, the contrastive loss
computation brings negligible training speed decrease, and
does not incur any additional overhead during inference.

B. Comparison to Other Losses

We further study the effectiveness of our contrastive
loss against representative semantic segmentation losses,
including Cross-Entropy (CE) Loss, AAF loss [9], Lovasz
Loss [1], and RMI Loss [17].

For fair comparison, we examine each loss using HR-
NetV2 [13] as the base segmentation network, and train the
loss jointly with CE on Cityscapes t rain for 40,000 iter-
ations with a mini-batch size of 8. The results are reported
in Table 2. We observe that all structure-aware losses out-
perform the standard CE loss. Notably, our contrastive loss
achieves the best performance, outperforming the second-

“The first two authors contribute equally to this work.

Model H Backbone sec./iter. { mloU (%)
SegSortig [8] || D-ResNet-101 - 78.2
AAF;g [9] || D-ResNet-101 - 79.2
DeepLabV3+15 [5] || D-Xception-71 - 79.6
PSPNet;7 [16] || D-ResNet-101 - 79.7
Auto-DeepLab-Lig [11] - - 80.3
HANety [6] || D-ResNet-101 - 80.3
SpyGR2 [10] || D-ResNet-101 - 80.5
ACFig [15] || D-ResNet-101 - 81.5
DeepLabV3,7 . 0.19 70.8

DeepLabV3+ ours || MOPHENCEV 631 1 op1 1)
DeepLabV3i7 . 0.21 71.3

DeepLabV3-+ Ours || MOPHENEEV2 635 17231 1.0)
DeepLabV3;7 . 0.21 70.7

DeepLabV3+ Ours || MOPHIENEV3 | 651 1a19 (1 12)
DeepLabV3:7 [4] 1.18 78.5

DeepLabV3-+ ours || D RENEEIOL | 30 a9 7 12)
HRNetV2, [13] 1.67 81.1

HRNetV2+ Ours || TRNCVZWAS | 07 | 822 (+1.1)
OCR2o [14] 1.29 80.6

OCR+ ours || DRENeEIOL 1 | 812 (+0.6)
OCR2o [14] 1.75 81.6

OCR+ ours || TRNEVZWA 1 o) | 824 (+0.8)

Table 1: Quantitative semantic segmentation results on
Cityscapes val [7]. D-ResNet-101 = Dilated-ResNet-101. D-
Xception-71 = Dilated-Xception-71. See §A for more details.

best Lovasz loss by 0.7 %, and the pairwise losses, i.e., RMI
and AAF, by 1.2% and 2.3%, respectively.

Additionally, Table 2 reports results of each loss in com-
bination with our contrastive loss. From a perspective of
metric learning, the CE loss can be viewed as a pixel-wise
unary loss that penalizes each pixel independently and ig-
nores dependencies between pixels, while AAF is a pair-
wise loss, which models the pairwise relations between
spatially adjacent pixels. Moreover, the RMI and Loviasz
losses are higher-order losses: the former one accounts
for region-level mutual information, and the latter one di-
rectly optimizes the intersection-over-union score over the
pixel clique level. However, all these existing loss de-
signs are defined within individual images, capturing lo-
cal context/pixel relations only. Our contrastive loss, as
it explores pairwise pixel-to-pixel dependencies, is also a
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Loss H Type Context Backbone ‘ mloU (%)
Cross-Entropy Loss unary local HRNetV2-W48 78.1
+AAF Loss [9] pairwise local HRNetV2-W48 78.7
+RMI Loss [17] higher-order local HRNetV2-W48 79.8
+Lovasz Loss [1] higher-order local HRNetV2-W48 80.3
+Contrastive Loss (Ours) H pairwise global HRNetV2-W48 ‘ 81.0
+AAF [9] + Contrastive - - HRNetV2-W48 81.0
+RMI [17] + Contrastive - - HRNetV2-W48 81.3
+Lovasz [1] + Contrastive - - HRNetV2-W48 81.5

Table 2: Comparison of different loss designs on Cityscapes val [7]. See §B for more details.

pairwise loss. But it is computed over the whole train-
ing dataset, addressing the global context over the whole
data space. Therefore, AAF can be viewed as a specific
case of our contrastive loss, and additionally considering
AAF does not bring any performance improvement. For
other losses, our contrastive loss are complementary to them
(global vs. local, pairwise vs. higher-order) and thus enables
further performance uplifting. This suggests that designing
a higher-order, global loss for semantic segmentation is a
promising direction.

C. More Qualitative Result

We provide additional qualitative improvements of
HRNetV2+Ours over HRNetV2 [13] on four benchmarks,
including Cityscapes val [7] in Fig. 1, PASCAL-Context
test [12] in Fig. 2, COCO-Stuff test [3] in Fig. 3, and
CamVid test [2] in Fig. 4. The improved regions are
marked by dashed boxes. As can be seen, our approach is
able to produce great improvements on those hard regions,
e.g., small objects, cluttered background.
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Figure 1: Qualitative semantic segmentation results on Cityscapes val [7]. From left to right: input images, ground-truths, results of
HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by white dashed boxes.



Figure 2: Qualitative semantic segmentation results on PASCAL-Context test [12]. From left to right: input images, ground-truths,
results of HRNetV2 [13], results of HRNetV2+-Ours. The improved regions are marked by black dashed boxes.

Figure 3: Qualitative semantic segmentation results on COCO-Stuff test [3]. From left to right: input images, ground-truths, results
of HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by black dashed boxes.

Figure 4: Qualitative semantic segmentation results on CamVid test [2]. From left to right: input images, ground-truths, results of
HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by black dashed boxes.



