Exploring Cross-Image Pixel Contrast for Semantic Segmentation Supplemental Material

Wenguan Wang^{1*}, Tianfei Zhou^{1*}, Fisher Yu¹, Jifeng Dai², Ender Konukoglu¹, Luc Van Gool¹

¹ Computer Vision Lab, ETH Zurich ² SenseTime Research

https://github.com/tfzhou/ContrastiveSeg

In this document, we first present additional quantitative results on Cityscapes val (*cf.* §A). Then, we conduct an empirical analysis of our contrastive loss against other semantic segmentation loss designs (*cf.* §B). Last, we provide more qualitative semantic segmentation results on Cityscapes val [7], PASCAL-Context test [12], COCO-Stuff test [3], and CamVid test [2] (*cf.* §C).

A. Additional Quantitative Result

Table 1 provides comparison results with representative approaches on Cityscapes val [7] in terms of mIoU and training speed. We train our models on Cityscapes train for 80,000 iterations with a mini-batch size of 8. We find that, by equipping with cross-image pixel contrast, the performance of baseline models enjoy consistently improvements (1.2/1.1/0.8 points gain over DeepLabV3, HR-NetV2 and OCR, respectively). We also carry out extra experiments over lightweight backbones (*i.e.*, MobileNet V1/V2/V3) for DeepLab V3. All the models are trained for 80,000 iterations with a mini-batch size of 16. As seen, our method also at- tains consistent improvements on lightweight backbones. In addition, the contrastive loss computation brings negligible training speed decrease, and does not incur any additional overhead during inference.

B. Comparison to Other Losses

We further study the effectiveness of our contrastive loss against representative semantic segmentation losses, including Cross-Entropy (CE) Loss, AAF loss [9], Lovász Loss [1], and RMI Loss [17].

For fair comparison, we examine each loss using HR-NetV2 [13] as the base segmentation network, and train the loss jointly with CE on Cityscapes train for 40,000 iterations with a mini-batch size of 8. The results are reported in Table 2. We observe that all structure-aware losses outperform the standard CE loss. Notably, our contrastive loss achieves the best performance, outperforming the second-

Model	Backbone	sec./iter.	mIoU (%)
SegSort ₁₉ [8]	D-ResNet-101	-	78.2
AAF ₁₈ [9]	D-ResNet-101	-	79.2
DeepLabV3+18 [5]	D-Xception-71	-	79.6
PSPNet ₁₇ [16]	D-ResNet-101	-	79.7
Auto-DeepLab-L ₁₉ [11]	-	-	80.3
HANet ₂₀ [6]	D-ResNet-101	-	80.3
SpyGR ₂₀ [10]	D-ResNet-101	-	80.5
ACF ₁₉ [15]	D-ResNet-101	-	81.5
DeepLabV3 ₁₇	N 1 1 N 4 N1	0.19	70.8
DeepLabV3+ Ours	Niodileinet- v I	0.31	72.1 (+1.3)
DeepLabV3 ₁₇	MalilaNet MO	0.21	71.3
DeepLabV3+ Ours	Widdheinet- v 2	0.35	72.3 (+1.0)
DeepLabV317	MobileNet V2	0.21	70.7
DeepLabV3+ Ours	WIODITEINEL- V 3	0.31	71.9 (+1.2)
DeepLabV3 ₁₇ [4]	D BacNat 101	1.18	78.5
DeepLabV3+ Ours	D-Resilet-101	1.37	79.7 (+1.2)
HRNetV2 ₂₀ [13]	LIDNotVO W/49	1.67	81.1
HRNetV2+ Ours	11Kivet v 2- vv 40	1.87	82.2 (+1.1)
OCR ₂₀ [14]	D BacNat 101	1.29	80.6
OCR+Ours	D-Residet-101	1.41	81.2 (+0.6)
OCR ₂₀ [14]	HDNotV2 W/49	1.75	81.6
OCR+ Ours	11KINCL V 2- W40	1.90	82.4 (+0.8)

Table 1: **Quantitative semantic segmentation results** on Cityscapes val[7]. D-ResNet-101 = Dilated-ResNet-101. D-Xception-71 = Dilated-Xception-71. See §A for more details.

best Lovász loss by **0.7%**, and the pairwise losses, *i.e.*, RMI and AAF, by **1.2%** and **2.3%**, respectively.

Additionally, Table 2 reports results of each loss in combination with our contrastive loss. From a perspective of metric learning, the CE loss can be viewed as a pixel-wise *unary* loss that penalizes each pixel independently and ignores dependencies between pixels, while AAF is a *pairwise* loss, which models the pairwise relations between spatially adjacent pixels. Moreover, the RMI and Lovász losses are *higher-order* losses: the former one accounts for region-level mutual information, and the latter one directly optimizes the intersection-over-union score over the pixel clique level. However, all these existing loss designs are defined within individual images, capturing *local* context/pixel relations only. Our contrastive loss, as it explores *pairwise* pixel-to-pixel dependencies, is also a

^{*}The first two authors contribute equally to this work.

Loss	Туре	Context	Backbone	mIoU (%)
Cross-Entropy Loss	unary	local	HRNetV2-W48	78.1
+AAF Loss [9]	pairwise	local	HRNetV2-W48	78.7
+RMI Loss [17]	higher-order	local	HRNetV2-W48	79.8
+Lovász Loss [1]	higher-order	local	HRNetV2-W48	80.3
+Contrastive Loss (Ours)	pairwise	global	HRNetV2-W48	81.0
+AAF [9] + Contrastive	-	-	HRNetV2-W48	81.0
+RMI [17] + Contrastive	-	-	HRNetV2-W48	81.3
+Lovász [1] + Contrastive	-	-	HRNetV2-W48	81.5

Table 2: Comparison of different loss designs on Cityscapes val [7]. See §B for more details.

pairwise loss. But it is computed over the whole training dataset, addressing the *global* context over the whole data space. Therefore, AAF can be viewed as a specific case of our contrastive loss, and additionally considering AAF does not bring any performance improvement. For other losses, our contrastive loss are complementary to them (global *vs.* local, pairwise *vs.* higher-order) and thus enables further performance uplifting. This suggests that designing a higher-order, global loss for semantic segmentation is a promising direction.

C. More Qualitative Result

We provide additional qualitative improvements of HRNetV2+Ours over HRNetV2 [13] on four benchmarks, including Cityscapes val [7] in Fig. 1, PASCAL-Context test [12] in Fig. 2, COCO-Stuff test [3] in Fig. 3, and CamVid test [2] in Fig. 4. The improved regions are marked by dashed boxes. As can be seen, our approach is able to produce great improvements on those hard regions, *e.g.*, small objects, cluttered background.

References

- [1] Maxim Berman, Amal Rannen Triki, and Matthew B Blaschko. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In *CVPR*, 2018. 1, 2
- [2] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A high-definition ground truth database. *PRL*, 30(2):88–97, 2009. 1, 2, 4
- [3] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Cocostuff: Thing and stuff classes in context. In *CVPR*, 2018. 1, 2, 4
- [4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587*, 2017. 1
- [5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In *ECCV*, 2018. 1
- [6] Sungha Choi, Joanne T Kim, and Jaegul Choo. Cars can't fly up in the sky: Improving urban-scene segmentation via height-driven attention networks. In CVPR, 2020. 1

- [7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *CVPR*, 2016. 1, 2, 3
- [8] Jyh-Jing Hwang, Stella X Yu, Jianbo Shi, Maxwell D Collins, Tien-Ju Yang, Xiao Zhang, and Liang-Chieh Chen. Segsort: Segmentation by discriminative sorting of segments. In *ICCV*, 2019. 1
- [9] Tsung-Wei Ke, Jyh-Jing Hwang, Ziwei Liu, and Stella X Yu. Adaptive affinity fields for semantic segmentation. In *ECCV*, 2018. 1, 2
- [10] Xia Li, Yibo Yang, Qijie Zhao, Tiancheng Shen, Zhouchen Lin, and Hong Liu. Spatial pyramid based graph reasoning for semantic segmentation. In *CVPR*, 2020. 1
- [11] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Autodeeplab: Hierarchical neural architecture search for semantic image segmentation. In CVPR, 2019. 1
- [12] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in the wild. In *CVPR*, 2014. 1, 2, 4
- [13] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual recognition. *IEEE TPAMI*, 2020. 1, 2, 3, 4
- [14] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Objectcontextual representations for semantic segmentation. In ECCV, 2020. 1
- [15] Fan Zhang, Yanqin Chen, Zhihang Li, Zhibin Hong, Jingtuo Liu, Feifei Ma, Junyu Han, and Errui Ding. Acfnet: Attentional class feature network for semantic segmentation. In *ICCV*, 2019. 1
- [16] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In *CVPR*, 2017. 1
- [17] Shuai Zhao, Yang Wang, Zheng Yang, and Deng Cai. Region mutual information loss for semantic segmentation. In *NeurIPS*, 2019. 1, 2

Figure 1: **Qualitative semantic segmentation results** on Cityscapes val [7]. From left to right: input images, ground-truths, results of HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by white dashed boxes.

Figure 2: Qualitative semantic segmentation results on PASCAL-Context test [12]. From left to right: input images, ground-truths, results of HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by black dashed boxes.

Figure 3: Qualitative semantic segmentation results on COCO-Stuff test [3]. From left to right: input images, ground-truths, results of HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by black dashed boxes.

Figure 4: **Qualitative semantic segmentation results** on CamVid test [2]. From left to right: input images, ground-truths, results of HRNetV2 [13], results of HRNetV2+Ours. The improved regions are marked by black dashed boxes.