
Supplementary: Feature Importance-aware Transferable Adversarial Attacks

Abstract

To intuitively demonstrate the effectiveness of the pro-
posed FIA, qualitative comparison is provided in this sup-
plementary. Following the experimental evaluation in the
main submission, corresponding examples in attacking nor-
mally trained models, attacking defense models, and abla-
tion study are visualized, respectively. Beside adversarial
examples, their attention maps with respect to the ground
truth are calculated by Grad-cam [4], which will illustrate
the “defocusing” effect and stronger transferability of our
FIA as compared to the state-of-the-art attacks. Meanwhile,
we also provide some additional experimental results sug-
gested by the reviewers to further demonstrate the effective-
ness of our method.

A. Attack Normally Trained Models
Adversarial examples and corresponding attention maps

in attacking normally trained models are shown in Fig-
ures 1-4. The examples are randomly picked from the test-
ing set. Given adversarial examples from different attack-
ing methods, attention maps are calculated based on dif-
ferent target models. Obviously, the proposed FIA (and
FIA+PIM) significantly defocuses the target models as
compared to the other methods, i.e., the attention maps on
our adversarial examples cannot focus on the important ob-
ject.

B. Attack Defense Models
In the same token, Figures 5-8 show the adversarial ex-

amples and attention maps in attacking defense models. In
summary of attacking normally trained and defense mod-
els, attention maps on adversarial examples from existing
attacks fail to focus on the object of interest if the target
model is just the source model, while the attention would
come back to the object of interest when the target model is
different from the source model.

However, attention maps on the adversarial examples
from the proposed FIA focus more on non-object regions
across different target models. In other words, existing at-
tack methods can only defocus the source model and rarely
mislead the other target models, while our method can make

the other target models fail to capture the important features
of the object in most cases, demonstrating the higher trans-
ferability of FIA.

C. Ablation Study

Recap the loss functions in the ablation study in the main
submission,

L1 =
∑∣∣fk(x)− fk(x

adv)
∣∣ ,

L2 =
∑

(∆clean ⊙ (fk(x)− fk(x
adv))),

L3 =
∑

(∆⊙ (fk(x)− fk(x
adv))),

where L1 optimizes the feature divergence without con-
straints like most of the baseline methods, L2 uses non-
aggregate gradient ∆clean (i.e., gradient from the original
clean image), and L3 is equivalent to our proposed loss us-
ing aggregate gradient. Figures 9-10 illustrate the adversar-
ial examples and corresponding attention maps using differ-
ent losses.

D. Comparison with other SOTA

Table 1 compares our method to other SOTA (i.e., SI-
NI-* [3]). Our FIA performs better than SI-NI-FGSM, SI-
NI-TIM, SI-NI-DIM and similar to SI-NI-TI-DIM which
combines multiple SOTA techniques that are not adopted
in FIA. If adapting our method to SI-NI-TI-DIM (i.e.,
FIA+SINITIDIM), it achieves the best performance, im-
proving SI-NI-TI-DIM by over 10% on average, agree with
the results in the main submission.

E. Performance on stronger defense models

Table 2 compares different methods against stronger de-
fense models, i.e., the top-3 defense solutions from the
NIPS 2017 adversarial competition. We can observe that
adapting our method to existing attacks will significantly
improve the transferability, i.e., FIA+SINITIDIM, which
improves the success rate of SINITIDIM by around 18%
on average, still aligning with the conclusion in the main
submission.



F. Time consuming
In the experiments, our method conducts 30 iterations

to obtain the aggregate gradient and 10 iterations for opti-
mization. Since the aggregate gradient can be calculated in
parallel/batch, running 40 iterations in total could cost sim-
ilar time as others iterate 10 times. For a fair comparison
in terms of computational complexity, let the baselines iter-
ate 30+10=40 times as shown in Table 3, where our method
still outperforms the others. Note that baselines tend to de-
grade with more iteration because of overfitting, while ours
benefits from increasing iteration due to the proposed aggre-
gate gradient as shown in the main submission. Thus, our
method would significantly extend the performance upper
boundary if adapted to others.

G. Effect of other transformations
We further conduct other transformations, e.g., Gaussian

noise, Median filter, Gaussian smooth, and JPEG compres-
sion. Their success rates on the target model Inception-
V4 (the source model is Inception-V3) are 65.8%, 62.5%,
60.2%, and 59.8%. By contrast, we adopt random mask that
achieves 83.5%.
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Figure 1. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Inc-v3.
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Figure 2. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is IncRes-v2.
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Figure 3. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Res-152.
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Figure 4. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Vgg-16.
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Figure 5. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Inc-v3.
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Figure 6. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is IncRes-v2.
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Figure 7. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Res-152.
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Figure 8. Adversarial examples from different attacks (i.e., the row headers), and the first row shows corresponding perturbations. For the
rest rows, the overlaying heat maps are attention from different target models (i.e., the column headers). In this experiment, the source
model is Vgg-16.
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Figure 9. Adversarial examples from different losses (i.e., the column headers), and the last column shows corresponding perturbations.
For the rest columns, the overlaying heat maps are attention from different target models (i.e., the row headers). In this experiment, the
source model is Inc-v3.
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Figure 10. Adversarial examples from different losses (i.e., the column headers), and the last column shows corresponding perturbations.
For the rest columns, the overlaying heat maps are attention from different target models (i.e., the row headers). In this experiment, the
source model is Vgg-16.

Table 1. Success rate of differnet methods. The source model is Inception-V3, “*” indicates white-box attack.
Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-152 Vgg-16 Vgg-19

SI-NI-FGSM 100.0%* 76.7% 74.0% 58.1% 52.5% 58.7% 60.9%
SI-NI-TIM 100.0%* 75.4% 71.4% 65.1% 59.3% 70.0% 69.3%
SI-NI-DIM 98.8%* 82.2% 80.0% 66.7% 60.3% 69.4% 68.5%

SI-NI-TI-DIM 98.5%* 82.4% 79.0% 73.4% 67.4% 80.7% 77.4%
FIA 98.3%* 83.5% 80.6% 70.4% 64.9% 71.4% 73.3%

FIA+SINITIDIM 97.9%* 89.8% 88.1% 87.0% 85.5% 90.8% 90.6%

Table 2. Success rate of different attacks on stronger defense models. The source model is Inception-V3.

Defense Models MIM DIM TIM PIM TIDIM PITIDIM SINITIDIM FIA FIA
+PITIDIM

FIA
+SINITIDIM

HGD [2] 5% 7.8% 20% 23.1% 31% 31.3% 51.0% 15.4% 53.3% 68.1%
R&P [5] 7.8% 11.3% 19.6% 26.9% 30.4% 33.8% 45.1% 24.2% 50.5% 66.3%

NIPS-r3 [1] 10.2% 15.4% 24.1% 28.7% 34.3% 37.9% 53.7% 34.2% 56.2% 71.1%

Table 3. Success rate of different attacks with the same number of iterations. The source model is Inception-V3.
Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-152 Vgg-16 Vgg-19

MIM(40) 100.0%* 37.3% 35.2% 33.1% 27.5% 39.2% 36.2%
DIM(40) 96.1%* 77.3% 73.6% 51.3% 44.5% 59.0% 57.6%
PIM(40) 100.0%* 51.8% 47.9% 49.8% 44.2% 61.4% 59.8%

PIDIM(40) 97.7%* 78.6% 74.3% 53.3% 47.9% 59.6% 60.7%
NRDM(40) 96.9%* 74.8% 63.9% 43.0% 31.4% 42.9% 41.3%

FDA(40) 94.7%* 57.3% 46.8% 33.6% 26.7% 36.8% 34.4%
FIA 98.3%* 83.5% 80.6% 70.4% 64.9% 71.4% 73.3%
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