
Image Synthesis via Semantic Composition
Supplementary Material

In this supplementary file, our descriptions contain the
following components:

• Detailed configuration of our proposed SC-GAN and
the implementation of the given spatially conditional
convolution and normalization.

• More semantic image synthesis results on the four
benchmarks.

• The synthesis performance of our generator trained
with a more effective discriminator and other tricks.

• The specification of how to apply our framework to un-
paired image-to-image translation and the correspond-
ing visual results.

• The limitations and some failure cases of our method.

Code is available at https://github/dvlab-
research/SCGAN.

1. Network Architectures
SC-GAN consists of Semantic Vector Generator (SVG)

and Semantic Render Generator (SRG). Their detailed de-
signs are given blew. For convenience, we suppose Conv(k,
s, c) indicates a convolutional operation whose kernel size,
stride size, and output channel number of the used con-
volution are k, s, and c, respectively. The dilation ratio
and padding size of Conv(k, s, c) are both set to 1. ↑
and ⊗ denotes a 2× bilinear upsampling and concatena-
tion (along with the channel dimension) operations, respec-
tively. Besides, SCResBlock(k, s, c) denotes a residual
block variant using spatially conditional convolution (SCC)
and normalization (SCN). Its schematic illustration is given
in Figure 4 of our paper. We use y[+x] to indicate an
extra input x of the current operation y. For example,
SCResBlock(3,1,512)[+Vi] indicates the semantic vectors
Vi (in feature maps form) is also incorporated into SCRes-
Block(3,1,512) for generating dynamic operators.

SVG : S ↓ → Conv(3,1,512) → LReLU →
Conv1(3,1,512) →↑ → ⊗(S ↓) → LReLU → Conv
(3,1,256)→ LReLU→ Conv2(3,1,256)→↑ → ⊗(S ↓)→

LReLU → Conv(3,1,128) → LReLU → Conv3(3,1,128)
→↑ → ⊗(S ↓) → LReLU → Conv(3,1,64) → LReLU →
Conv4(3,1,64)→↑ → ⊗(S ↓)→ LReLU→ Conv(3,1,32)
→ LReLU→ Conv5(3,1,32)→↑ → ⊗(S ↓)→ LReLU→
Conv(3,1,32) → LReLU → Conv6(3,1,32) →↑ → ⊗(S)
→ LReLU → Conv(3,1,16) → LReLU → Conv(3,1,3) →
Hardtanh→ f out

V (S),
where S indicates the input segmentation mask.

SRG : z → SCResBlock(3,1,512) [+V1]→↑ → SCRes-
Block(3,1,512) [+V2]→↑→ SCResBlock(3,1,512) [+V2]
→↑ → SCResBlock(3,1,256) [+V3] →↑ → SCRes-
Block(3,1,128) [+V4] →↑ → SCResBlock(3,1,64) [+V5]
→↑ → SCResBlock(3,1,32) [+V6]→↑ → Conv (k3c3)→
Hardtanh→ Î,
where z is sampled from a standard normal distribution, Vi

L99 Convi from SVG, and L99 denotes the adaptive pooling
operation (in channel dimension).

1.1. Implementation of Key Components

The pseudo codes to realize the proposed spatially con-
ditional convolution (SCC) and normalization (SCN) are
given in Alg 1 and 2, respectively. In general, they are
designed that the regional parameterized weights are gen-
erated by combining a group of candidates, and the manner
how they are combined is indicated by the fed semantic vec-
tors (e.g. the following V).

2. More Experimental Results and Analysis
We give more visual comparisons on CelebAMask-HQ

[3] (Figure 2, 3, and 4), Cityscapes [2] (Figure 5), ADE20K
[7] (Figure 6, 7, 8, and 9), and COCO-Stuff [1] (Figure
10, 11, 12, and 13). Also, more multi-modal outputs (Fig-
ure 14 and 15) and interpolations (Figure 16 and 17) on
CelebAMask-HQ are given, as well.

2.1. Performance with a Stronger Discriminator
and Training Tricks

We evaluate the compatibility between our proposed
generator and a newly introduced discriminator [6], along
with some effective training techniques. Sushko et al. pre-
sented a powerful discriminator exploiting semantic layouts

1

Figure 1. The framework of SC-GAN for unpaired image-to-image translation.

Algorithm 1 The pseudo code of SCC (PyTorch style)
Input: Input feature maps F ∈ Rb×cin×h×w and the

generated semantic vectors V ∈ Rb×n×h×w, and
learnable parameter candidates {ki} where ki ∈
Rcin×ks×ks×cout , and cin, cout, and ks denote the input,
output channel number, and kernel size.

Output: The convolved feature maps F̂ ∈ Rb×cout×h×w.
1: V = V.unsqueeze(2) # shape: b× n× 1× h× w
2: out = [0] ∗ n
3: for i = 1 to n do
4: out[i] = ki(F).unsqueeze(1)
5: end for
6: F̂ = torch.cat(F, dim = 1) # shape: b×n×cout×h×w
7: F̂ = F̂ ∗V
8: F̂ = torch.sum(F̂, dim = 1) # shape: b× cout × h× w

Algorithm 2 The pseudo code of SCN (PyTorch style)
Input: Input feature maps F ∈ Rb×cin×h×w and the gener-

ated semantic vectors V ∈ Rb×n×h×w, and learnable
parameter candidates A, where A ∈ Rn×2cin .

Output: The normalized feature mapsF̂ ∈ Rb×cin×h×w.
1: V = V.permute(0, 2, 3, 1).contiguous() .view(−1, n)

shape: b× n× h× w → bhw × n
2: F̂ = BN(F) # shape: b× cin × h× w
3: A = torch.matmul(V,A).view(b, h, w,−1).permute

(0, 3, 1, 2).contiguous() # shape: b× 2cin × h× w
4: m, s = torch.split(A, n, dim = 1)
5: F̂ = F̂ ∗ (1 + s) +m

Table 1. Quantitative results on the validation sets of Cityscapes
and ADE20K from different methods. Ours w OASIS denotes our
generator is trained with the discriminator and other techniques
from OASIS [6].

Method Cityscapes ADE20K
mIoU ↑ FID ↓ mIoU ↑ FID ↓

SPADE [5] 62.3 71.8 38.5 33.9
CC-FPSE [4] 65.6 54.3 43.7 31.7

OASIS [6] 69.3 47.7 48.8 28.3
Ours 66.9 49.5 45.2 29.3

Ours w OASIS 69.9 47.2 49.1 27.6

(OASIS) by semantic segmentation loss. Their approach
further strengthens GAN training by 1) balancing the class
weights by their frequencies, 2) removing VGG loss, and
3) exponential moving average (EMA) model merging (for
generator). During training, they mask generated regions
with a random class and add 3D random noise to all input
segmentation masks to enhance local detail synthesis. By
integrating their techniques (except 3D random noises), our
model can be further improved over performance, as given
in Table 1. Compared with OASIS [6], our proposed gener-
ator yields better quantitative results with a smaller capacity
(66.2M (ours) vs. 94M (OASIS)).

2.2. Unpaired Image-to-image Translation

As we claimed in the paper, our method is also appli-
cable to unpaired image-to-image translation applications
with minor modifications. Its corresponding framework is
presented in Figure 1. Specifically, changing the input of

SRG from the random noise to the downsampled image
from the source domain, then the output of SRG should be
close to its input one in semantic layout (using perceptual
loss), and similar to images from the target domain in style
(texture, detail, etc). The input of SVG is set to the image
from the target domain, and it still regresses to the input
image like an autoencoder. Figure 18 gives visual results
from our model on summer→winter dataset [8], in which
our proposed method can alter the source image style by
changing its color and texture according to the reference.

2.3. Limitations and Failure Cases

Although our design enhances generation performance
by explicitly learning the relations between different seman-
tics, it may fail to fully recover the intrinsic geometry in the
original image when the given segmentation map is short of
such cues (Figure 19). This is a common issue in numerous
generative models, usually addressed by introducing extra
modal (e.g. depth) or multi-view data.

Moreover, the explicit modeling between semantics
by their appearances may lead to creating undesired ob-
jects/stuff in the target semantic region, as given in Figure
19. Though the details in building regions are vivid, unex-
pected plants are synthesized in these areas. We suppose it
is caused by that our model learns such symbiotic bias be-
tween these two kinds of stuff in the training data. Utilizing
segmentation masks to further constrain semantic vectors
(e.g. adding semantic segmentation loss to SVG) may ad-
dress this issue. We will study it in the future.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In CVPR, pages
1209–1218, 2018. 1

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, pages 3213–
3223, 2016. 1

[3] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In CVPR, pages 5549–5558, 2020. 1

[4] Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, et al.
Learning to predict layout-to-image conditional convolutions
for semantic image synthesis. In NeurIPS, pages 570–580,
2019. 2

[5] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, pages 2337–2346, 2019. 2

[6] Vadim Sushko, Edgar Schönfeld, Dan Zhang, Juergen Gall,
Bernt Schiele, and Anna Khoreva. You only need adversar-
ial supervision for semantic image synthesis. arXiv preprint
arXiv:2012.04781, 2020. 1, 2

[7] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In CVPR, pages 633–641, 2017. 1

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In ICCV, pages 2223–2232, 2017. 3

(1) The input (2) SPADE (3) MaskGAN (4) Ours.
Figure 2. Visual comparisons on CelebAMask-HQ.

(1) The input (2) SPADE (3) MaskGAN (4) Ours.
Figure 3. Visual comparisons on CelebAMask-HQ.

(1) The input (2) SPADE (3) MaskGAN (4) Ours.
Figure 4. Visual comparisons on CelebAMask-HQ.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 5. Visual comparisons on Cityscapes.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 6. Visual comparisons on ADE20K.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 7. Visual comparisons on ADE20K.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 8. Visual comparisons on ADE20K.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 9. Visual comparisons on ADE20K.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 10. Visual comparisons on COCO-stuff.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 11. Visual comparisons on COCO-stuff.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 12. Visual comparisons on COCO-stuff.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 13. Visual comparisons on COCO-stuff.

Figure 14. Multi-modal predictions of our method on CelebAMask-HQ.

Figure 15. Multi-modal predictions of our method on CelebAMask-HQ.

Figure 16. Multi-modal interpolation of our method on CelebAMask-HQ.

Figure 17. Multi-modal interpolation of our method on CelebAMask-HQ.

Figure 18. Unpaired image-to-image translation results from our model on summer→winter. The source images, their reference ones
(target images), and their corresponding translated results are marked by blue, purple, and black rectangles, respectively.

(1) The input (2) SPADE (3) CC-FPSE (4) Ours.
Figure 19. Failure cases. The top row: failing to add dimension and depth in facade. The bottom row: introducing undesired objects in the
given semantic regions.

