
A. Details of compositional reasoning frame-
works

Baseline visual reasoning framework The original com-
positional reasoning framework [19] is similar to the phase
1 of our framework in Figure 2 of the main paper, except
that it works on pixel-level instead of object-level features.
To generate vs, it feeds the image to a ResNet101 [14] pre-
trained on ImageNet [10] and flatten the last feature maps
across the width and height as vs. For the question inputs,
we first convert each question word to its word embedding
vector (ws), then input ws to a bidirectional LSTM [15, 11]
to extract the question embedding vector q. The composi-
tional reasoning module takes vs, ws and q as inputs and
performs multi-step reasoning to attain m, the final step
memory output. Finally, the classifier outputs the proba-
bility for each answer choice with a linear classifier over
the concatenation of m and q.

The MAC reasoning module At each step, the i-th MAC
cell receives the control signal ci�1 and the memory output
from the previous step, mi�1, and outputs the new mem-
ory vector mi. The control unit computes the single ci to
control reading of vs in the R/W unit. Specifically, it com-
putes the interactions among ci�1, qi, and each vector in
ws to produce the attention weights, and weighted averages
ws to produce ci. The control unit of each MAC cell has a
unique question embedding projection layer, while all other
layers are shared. The R/W unit aims to read the useful vs
and store the read information into mi. It first computes the
interactions among mi�1, ci�1 and each vector in vs to at-
tain the attention weights, weighted averages vs to produce
a read vector ri, and finally computes the interaction of ri
and mi�1 to produce mi. The weights of the R/W units are
shared across all MAC cells. The initial control signal and
memory c0 and m0 are learnable parameters.

B. Implementation details
CLEVR We set the hidden dimension D to 512 in all
modules. We follow [19] to design the question embed-
ding module, the compositional module and the classifier.
For the object-level feature extracter, we make the back-
bone ResNet34 learnable and zero-pad the output vs to 12
vectors in total for any image. Notice that the maximum
number of objects in an image is 11, so that the reasoning
module is able to read nothing into the memory for some
steps. For the concept projection module, to cover the full
view of vs, the conv1D consists of five 1D convolution lay-
ers with kernel sizes (7,5,5,5,5), each followed by a Batch
Norm layer [22] and an ELU activation layer [9].

We use Adam optimizer [28] with momentum 0.9 and
0.999. Phase 1 and phase 2 share a same training schedule:
the learning rate is initiated with 10�4 for the first 20 epochs
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Figure 10: Concepts and super concept sets. Each circle
represents a concept described by the words in that circle.
A super concept set comprises the concepts represented by
circles of the same color.
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Figure 11: An multi-modal analogy example enabled by our
results.

and is halved every 5 epochs afterwards until stopped at the
40th epoch. We train the concept regression module sep-
arately with learning rate of 10�4 for 6 epochs. All the
training process is conducted with a batch size of 256.

GQA The implementation details in the GQA setting ba-
sically follows the details on CLEVR. To better handle the
complexity in GQA, we concatenate the object features with
their corresponding bounding box coordinates to enhance
the objects’ location representations similar to [18]. We
use GloVe [36] to initialize question word embeddings and
maintain an exponential moving average with a decay rate
of 0.999 to update the model parameters.

C. Visualization of the induced concept hierar-
chy

After visual mapping, binary coding and concept/super-
concept induction, the unary concepts and super concepts
are induced as shown in Figure 10; the binary concepts are
’left’, ’right’, ’front’ and ’behind’, and {’left’, ’right’} and
{’front’, ’behind’} form two super concept sets. The gen-
erated concept hierarchy perfectly recovers the definition in
CLEVR data generator and matches human prior knowl-
edge, showing the success of our approach.

D. Multi-modal concept analogy
Our concept induction results bridge the visual and sym-

bolic spaces. The results enable to extend word anal-



ogy [34] (e.g., “Madrid” - “Spain” + “France” ! “Paris”)
into the multi-modality setting. Figure 11 gives an example,
starting with the initial object v0 and its predicted concepts
K0, subtracting concepts K1 and adding new concepts K2

result in a new concept set K3 (Figure 11 (bottom)). Then if
we retrieve visual object vi with each concept set Ki along
the path (Figure 11 (top)), we have v0� v1+ v2 ⇡ v3 in the
original visual feature space.

E. Derivation from the concept interpretation
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Figure 12: Illustration of the semantic distance.

With the induced concepts and super concept sets, each
object can be represented with a zero-one vector, k, where
the entry is 1 if that object possesses the corresponding con-
cept or 0 otherwise. Notice that the super concept sets split
the whole concept set; we thereby name the entries of k cor-
responding to one super concept set as a super concept. The
super concept is thus a zero-one vector with exactly one
entry to be 1. We name this pattern as the super concept
constraint. Therefore, we can define the semantic distance
between two visual objects by the number of different super
concepts or by Eqn. (5).

⇣k1,k2 =
|k1 � k2|11

2
, (5)

where k1 and k2 are the concept vectors representing two
objects and � is the operation XOR. Studying the concepts
and super concept sets induced, we acknowledge that the
super concept sets correspond to color, shape, size and ma-
terial in semantics. Thereby, we give an example of the se-

Figure 13: The original images for extracting visual fea-
tures. The object-level features corresponding to the objects
bounded by red rectangles are used for the illustration of se-
mantic operations in the visual feature space.
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Figure 14: Illustration of the semantic analogy in the visual
feature space. (a) The operations on the visual features. (b)
The cosine similarities between pairs of visual feature vec-
tors.

mantic distances of multiple objects to one object as shown
in Figure 12. The circle radii indicate the semantic distances
to the object at the centers of these circles. The inner three
circles are segmented so that each segment represents what
super concepts are different. The outer circle represents all
the 4 super concepts are different between the object on that
circle and the object at the center.

We can further interpret the semantic analogy in the vi-
sual feature space with the induced concept vectors. Shown
in Figure 13, we first generate four images of different ob-
jects; then, we use our trained OCCAM structure to ex-
tract the object-level features corresponding to the objects
bounded by red rectangles. Shown in Figure 14(a), we can
move the visual feature vector of the leftmost object closer
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Figure 15: Operations on the concept vectors.

to that of the rightmost object by subtracting and adding
visual feature vectors of two other objects. The proxim-
ity between pairs of visual feature vectors is measured with
cosine similarity as shown in Figure 14(b). In the concept
vector space, we can define a ’minus’ operation, k1\k2, as
eliminate the shared super concepts between k1 and k2 from
k1. We can also define a ’plus’ operation, k01 � k2, between
a concept vector template k01 and a concept vector k2 as add
the super concepts of o2 that o01 misses to o

0
1. Therefore,

The operations in the visual feature space can be explained
with the operations we defined in the concept vector space
shown in Figure 15.

F. Visualization of reasoning steps
We give an example of the compositional reasoning steps

on the induced concept space of OCCAM as shown in Fig-
ure 16. While the attention is directly imposed on the pro-
jected concept vectors in the read unit of the compositional
reasoning module, the attention can be equally mapped to
the concept vectors and the visual objects as the projected
concept vector to the concept vector or the projected con-
cept vector to the visual object is a one-to-one mapping re-
lationship. We also give an example of the compositional
reasoning steps on the GQA dataset shown in Figure 17. As
the dimension of the induced concept vectors is too high,
here we only present the attention on objects in the image.

G. Human study
We assess the concept and super concept induction by

studying how the word correlation conforms with our hu-
man knowledge. We present an extended subset of GQA
concept correlations shown in Figure 18. It consists of the
98 most common single words for describing objects. Each
entry in the matrix represents the conditional probability
that the column attribute exists given the row attribute ex-

ists. A pair of mutual high correlation values between two
words indicates that these words belong to the same con-
cept, while the opposite means that the concepts represented
by those words belong to a super concept. Therefore, we
can evaluate the concept induction by assessing the condi-
tional probabilities of synonyms or uncorrelated words for
each word, because from us human understanding, a syn-
onym is used to describe the same concept while an un-
correlated word describes a concept belonging to the same
super concept.

For each word in the extended subset words, we first let
annotators choose 2 synonyms and 2 uncorrelated words
from the rest 97 words. Then, rank the four chosen words in
a descending order of similarity between them and the orig-
inal word. Based on these annotations, we conduct two ex-
periments: 1) measure the accuracy of classifying the cho-
sen words to synonyms and uncorrelated words; 2) measure
the Kendall tau distance [26] between the word similarity
ranking based on the conditional probability and that rank-
ing based on human knowledge.

For the first experiment, we use a binary classifier with
threshold 0.5 to classify the chosen words by humans. If
a word’s conditional probability given the original word is
greater than the threshold, this word is classified as a syn-
onym; if smaller, this word is classified as an uncorrelated
word. The accuracy can be calculated with Eqn. (6).

A =
1
|S|

X

i2S

1
|Wi|

(
X

j2W
pos
i

(Ri,j > t) +
X

j2W
neg
i

(Ri,j < t)),

(6)

where A represents accuracy, S is the subset of words, Wi

represents the set of synonyms and uncorrelated words cho-
sen for word i, Ri,j represents the conditional probability
of word j given word i exists and t is the threshold. For
comparison, we also calculate the cosine similarity of word
GloVe [36] embeddings to substitute the conditional proba-
bility and serve as R in Eqn. (6). For this setting, we tune
the threshold t to be 0.21 to reach the best accuracy. The
result in Table 4 shows that our induction highly conforms
with our human sense in grouping words into concepts but
does not agree much with humans in grouping super con-
cepts. By further studying specific cases, we realize that
a word and its uncorrelated words defined by humans can
simultaneously describe one object. For example, ‘white’
and ‘black’ can be used together to describe a zebra; ‘leafy’
and ‘leafless’ both describes a status of a plant. Such words
have high correlations, which defects with our human un-
derstanding.

The second experiment measures how the induced word
proximity conforms with our human knowledge. For a
word wi, our annotators rank the chosen synonyms and un-
correlated words ai = (ai1, ai2, ai3, ai4) with a descend-
ing order of word similarity to wi and assign a sequence
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Figure 16: Visualization of reasoning steps on CLEVR dataset. (a) The question, image, prediction and ground truth answer.
The index of each object is shown on the upper left of the object. (b) The induced concepts of objects and relations. (c) The
stepwise attentions on question words. (d) The stepwise attentions on objects. (e) The concept vector read into the memory
of the reasoning module in each step.



Figure 17: Visualization of reasoning steps on GQA dataset.

of order indices O
human

i
= (0, 1, 2, 3) to ai. Then, we

rank (ai1, ai2, ai3, ai4) with a descending order of their
conditional probabilities and assign a sequence of order
indices O

induce

i
to ai. For comparison, we further rank

(ai1, ai2, ai3, ai4) in a descending order of cosine similar-
ities between the GLoVe embeddings of (ai1, ai2, ai3, ai4)
and wi and assign a sequence of order indices O

word2vec
i

to ai. The average ranking distance can be calculated with
Eqn. (7).

D(Ox) =
1
|S|

X

i2S

K(Ohuman

i , O
x

i ), (7)

where D represents the average ranking distance, x 2
{induce, word2vec}, K represents the operation for cal-
culating the normalized Kendall tau distance between two



Figure 18: The extended subset of GQA concept correlations.

Table 4: The accuracy of classifying synonyms and uncor-
related words. A

pos represents the accuracy of classifying
only synonyms. A

neg represents the accuracy of classify-
ing only antonyms. †For word2vec, we tune the threshold
on ground truth, while our method is used out of the box
without threshold tuning (i.e., threshold set to 0.5).

Method A
pos

A
neg

A

word2vec† 76.02% 60.71% 68.37%
induction 92.35% 63.78% 78.06%

rankings. The result in Table (5) proves that our induction

Table 5: The average ranking distance to human rankings.

D(Oword2vec) D(Oinduce)

0.3418 0.2585

from visual language relations encodes word proximity that
is more aligned with human knowledge than the one en-
coded by GloVe embeddings from language-only data.

H. Error analysis

The reasoning process may reach a false answer if 1) a
concept is mentioned in the question and 2) that concept
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obj0 obj1 obj2
gray 0 0 0
red 0 1 0
blue 0 0 0

green 0 0 0
brown 1 0 0
purple 0 0 1
cyan 0 0 0

yellow 0 0 0
sphere 0 0 0
cube 0 1 0

cylinder 1 0 1
large 1 1 1
small 0 0 0
metal 1 0 1
matte 0 1 0

obj0 obj1 obj2
left0 0 0 0
left1 1 0 1
left2 1 0 0

right0 0 1 1
right1 0 0 0
right2 0 1 0
front0 0 1 0
front1 1 0 0
front2 1 1 0

behind0 0 0 1
behind1 0 0 1
behind2 0 0 0

question answer ground truth

There is a big brown metal cylinder; how 
many large matte cubes are behind it? 0 1

What is the color of the rubber cube? red red

Figure 19: Error analysis. The predicted unary and binary
concepts corresponding to each object in the image above
are shown in the tables at the middle; the digits colored in
red are wrong predicted concepts. The questions, the pre-
dicted answers and the ground truth answers are shown in
the table at the bottom.

is wrongly classified for the objects ought to be attended.
However, the reasoning process may still reach a correct
answer if either of these two conditions is not sufficed. We
present two examples in Figure 19.


