
Interpreting Attributions and Interactions of Adversarial Attacks:
Supplementary Materials

A. Comparisons of Shapley-based attributions and other explanation methods
We define regional attributions and interactions between perturbation pixels based on Shapley values [6]. We compare

Shapley-based attributions with other explanation methods from the following perspectives.
• Theoretical rigor. A good attribution method must satisfy certain desirable properties. The Shapley value has been

proved to be the unique attribution that satisfies four desirable properties, i.e. the linearity property, the dummy property,
the symmetry property, and the efficiency property [3]. In comparison, some explanation methods like Grad-CAM [5] and
GBP [7] do not have theoretic supports for the correctness of these methods.

• Objectivity. The attribution of one input element depends on contexts of neighboring pixels. The Shapley value considers
all possible contexts to compute the attribution of an input unit, which ensures the objectiveness of the attribution. In contrast,
some attention methods, such as the adversarial saliency map [4], only consider the marginal gradient, which is biased to a
specific context from this perspective.

• Trustworthiness. The theoretic foundation in game theory makes the Shapley values trustworthy. In contrast, some
seemingly transparent explanation methods simply do not have clear theoretical support, which hurts the trustworthiness of
the explanation. Actually, [1] has shown some explanation methods like GBP [7] can not reflect the true attribution.

• Broad applicability. The Shapley values can be extended to measure interactions between two input elements. [8]
has proved the theoretical foundation and advantages for defining interactions using the Shapley value in game theory [3].
However, some gradient-based explanation methods assume the model is locally linear, which fails to measure interactions
between two input elements.

B. Details of efficient approximation of interactions
We approximate Shapley values to enable efficient computation of interactions.

B.1. Approximation of attributions of perturbation pixels

In Section Algorithm, we introduce the approximation of the Shapley value of a perturbation pixel. In the supplementary
material, we give more discussions about the approximation.

The adversarial perturbation is denoted as δ ∈ Rn. Each perturbation pixel i is divided into K sub-pixels with equal
values, i.e. δi = δ(i,1) + δ(i,2) + · · ·+ δ(i,K) and δ(i,1) = δ(i,2) = · · · = δ(i,K). Instead of directly computing the attribution
of each perturbation pixel, we compute the attribution of each sub-pixel. The attribution of the sub-pixel can be efficiently
approximated based on the Taylor expansion, which will be discussed later.

Among sub-pixels (i, 1), (i, 2) . . . (i,K), each sub-pixel plays the same role in attacking, thereby φ(i,1) = φ(i,2) =
· · · = φ(i,K), which is proved as follows. The attribution of each sub-pixel (i, k) is formulated as the Shapley value. The
Shapley value satisfies the four axioms (linearity axiom, dummy axiom, symmetry axiom, and efficiency axiom). According
to the symmetry axiom, given two sub-pixels (i, k) and (j, k′) , if z(S ∪ {(i, k)}) = z(S ∪ {(j, k′)}) holds for any set
S ⊆ Ωpixel\{(i, k), (j, k′)}, then φ(i,k) = φ(j,k′), where Ωpixel = {(1, 1), (1, 2), . . . , (n,K − 1), (n,K)} denotes the set of
all sub-pixels. Because the sub-pixel of the same perturbation pixel i has the equal value, given two sub-pixels (i, k) and
(i, k′) of the same perturbation pixel i, z(S∪{(i, k)}) = z(S∪{(i, k′)}) holds for any set S ⊆ Ωpixel\{(i, k), (i, k′)}, where
1 ≤ k, k′ ≤ K, and k 6= k′. In this way, φ(i,1) = φ(i,2) = · · · = φ(i,K). Thus, we approximate the attribution of perturbation
pixel i as φi =

∑K
i=1 φ(i,k), which equals to φi = K · φ(i,k).



B.2. Properties of the approximated attribution

In Section Algorithm, we approximate the attribution of perturbation pixel i as φi =
∑K

i=1 φ(i,k). In the supplementary
material, we further discuss properties of the approximated attribution.

The approximated attribution still satisfies the linearity axiom and the efficiency axiom.
Proof of the linearity axiom: Given two score functions v(S) and w(S), we use φvi and φwi to denote the attribution of

perturbation pixel i to score v and score w respectively.
Let there be a new score function f ′(S) = v(S) + w(S). We use φv+w

i to denote the approximated attribution of
perturbation pixel i to the new score function. The approximated attribution of perturbation pixel i is the sum of attributions
sub-pixels, i.e. φv+w

i =
∑K

k=1 φ
v+w
(i,k) . The attribution of each sub-pixel is defined as the Shapley value. The Shapley value

satisfies the linearity axiom. Then
∑K

k−1 φ
v+w
(i,k) =

∑K
k=1(φv(i,k)+φ

w
(i,k)) = φvi +φwi . In this way, the approximated attribution

is proved to satisfy the linearity axiom, i.e. φv+w
i = φvi + φwi .

Proof of the efficiency axiom: The approximated attribution of each perturbation pixel is the sum of attributions of cor-
responding sub-pixels. Thus, the sum of approximated attributions of all perturbation pixels is the sum of attributions of all
sub-pixels, i.e.

∑n
i=1 φi =

∑n
i=1

∑K
k=1 φ(i,k).

Attributions of sub-pixels satisfy the efficiency axiom, i.e.
∑n

i=1

∑K
k=1 φ(i,k) = z(Ωpixel) − z(∅). z(Ωpixel) is the score

gained with all sub-pixels, i.e. the score made by the whole adversarial perturbation δ, and z(∅) is the score produced
without the adversarial perturbation, i.e. the score made by the original image. z(Ω) also represents the score made by the
whole adversarial perturbation δ, where Ω = {1, 2, . . . , n} is the set of all perturbation pixels. Thus, z(Ωpixel) = z(Ω), and∑n

i=1

∑K
k=1 φ(i,k) = z(Ωpixel) − z(∅) = z(Ω) − z(∅). In this way, the approximated attribution is proved to satisfy the

efficiency axiom, i.e.
∑n

i=1 φi = z(Ω)− z(∅).

B.3. Approximation for attributions of sub-pixels based on the Taylor expansion

In the paper, we approximate attributions of sub-pixels based on the Taylor expansion as Equation (8). In the supplemen-
tary material, we aim to derive the approximation in details.

Given a function f(x1, x2, . . . , xn) : Rn → R, the Taylor expansion at (x
(k)
1 , x(k)

2 , . . . , x
(k)
n ) is

f(x1, x2, . . . , xn) = f(x
(k)
1 , x

(k)
2 , . . . , x(k)

n )

+

n∑
i=1

(xi − x(k)
i )

∂f(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n )

∂xi

+ o((x1 − x(k)
1 , x2 − x(k)

2 , . . . , xn − x(k)
n ))

z(S ∪ {(i, k)}) denotes the change of the prediction score of the DNN made by sub-pixels in S ∪ {(i, k)}, where S ⊆
Ωpixel\{(i, k)}. The Taylor expansion for z(S ∪ {(i, k)}) at S is given as

z(S ∪ {(i, k)}) ≈ z(S) + δ(i,k) ·
∂z(S)

∂δ(i,k)

Thus, the approximation for the Shapley value of the sub-pixel (i, k) is given as

φ(i,k) =
1

nK

∑
S⊆Ωpxiel\{(i,k)}

(
nK − 1

|S|

)−1[
z(S ∪ {(i, k)})− z(S)

]

≈ 1

nK

∑
S⊆Ωpixel\{(i,k)}

(
nK − 1

|S|

)−1

(
∂z(S)

∂δ(i,k)
δ(i,k))

Let there be m components in a certain clustering step. C(u)
k =

⋃
i∈C(u)(i, k) denotes a sub-component. We use Ωcomp =

{C(1)
1 , C

(1)
2 , . . . , C

(m)
K−1, C

(m)
K } to denote the set of all sub-components. The Shapley value of the sub-component C(u)

k is



approximated as

φ
C

(u)
k

=
1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1[
z(S ∪ {C(u)

k })− z(S)
]

≈ 1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1 ∑
(i,k)∈C(u)

k

[
z(S ∪ {i, k})− z(S)

]

≈ 1

mK

∑
S⊆Ωcomp\{C(u)

k }

(
mK − 1

|S|

)−1 ∑
(i,k)∈C(u)

k

(
∂z(S)

∂δ(i,k)
δ(i,k))

B.4. Implementation & computational complexity:

Clarification: In both the paper and the supplementary material, the computational complexity is quantified as times
of network inference, i.e. the number of input (masked) images on which we conduct the forward/backward propagation.
We do not count the number of detailed operations during the forward/backward propagation w.r.t. each specific input
image, in order to simplify the analysis. It is because given a specific DNN, the number of detailed operations during
the forward/backward propagation is the same for different input images.

In the paper, we introduce the implementation of the approximation of Shapley values and analyze the computational
complexity. In the supplementary material, we aim to further explain the computational complexity of our approximation for
attributions and how we approximate the attribution of components in detail.

We use a sampling-based method to reduce the complexity of computing Shapley values. The original formulation of the
Shapley value considers all combinations of pixels to compute the Shapley value for each pixel. Thus, the computational
complexity of the Shapley value of each pixel is O(2n). We implement the approximation of Shapley values of sub-pixels
with a sampling method. In this way, the complexity of computing the Shapley value of one sub-pixel is reduced toO(nKT ).
Note that φi ≈ K · φ(i,k). Therefore, the complexity of approximating the Shapley value of each pixel is also O(nKT ). The
derivatives towards all sub-pixels can be computed simultaneously via back-propagation. Thus, the computational complexity
of computing Shapley values of all pixels remains O(nKT ).

We use hierarchical clustering to iteratively merge several components into a larger component based on interactions.
We use the following approximation method, to compute and reduce the complexity of computing the attribution of the
pair of components. Let there be m components in a certain clustering step. Given a component C(u), we can use the
sampling method to get their attributions φC(u) . Here, from the perspective of game theory, each component is a player,
and there are m players in the game. As mentioned above, the complexity of computing φC(u) is O(mKT ). We use
Sc = C(i1) ∪C(i2) ∪ · · · ∪C(iq) to denote a component candidate. To determine the interaction inside Sc, we need to compute
φ′Sc . The computation of φ′Sc regards C(i1), C(i2), . . . , C(iq) as a single component. Then, the set of components changes to
{Sc, C(ik+1) . . . , C(im)}withm−q+1 players. In this way, the computational complexity of φ′Sc isO((m−q)KT ). Whereas,
considering all potential pairs of components, the computational complexity grows. We only consider the interaction between
neighboring components. There are m potential pairs of components, and the complexity of computing all potential pairs of
components is O(m(m− q)KT ).

Considering the local property [2], we can further approximate φ′
C(u)

⋃
C(v) by simplifying contextual relationships of

far-away pixels. Here, instead of computing φ′Sc in the set {Sc, C(ik+1) . . . , C(im)}, we randomly merge m̃ components to
get m̃/q component candidates, including Sc. In this way, the new set includes m̃/q component candidates and m − m̃
components, i.e. {Sc,

⋃2q
a=q+1 C

(ia), . . . ,
⋃m̃

a=m̃−q+1 C
(ia), C(im̃+1), . . . , C(im)}. We can simultaneously compute attributions

of m̃/q candidates in the new set, and the computational complexity is O((m− (q − 1)m̃/q)KT ). To compute attributions
of all potential component candidates, we need to sample qm/m̃ different sets. In this way, the overall complexity for the
computation of attributions of candidates is reduced from O(m(m− q)KT ) to O(m(qm/m̃− q)KT ).

C. Pseudo code of extracting perturbation components



Algorithm 1 Extraction of perturbation components via hierarchical clustering
1: Inputs: pixel set Ω; reward function z(·); component size q; iteration times T
2: Outputs: Component set Ω′;
3: Initialization: Ω′ = Ω
4: for iter = 1 to T do
5: ∀C ∈ Ω′, compute φC with reward function z(·)
6: while not all possible component candidates are considered do
7: Get component candidate set Ωcandidate by randomly merging each group of neighboring q components in Ω′

8: ∀Ccandidate ∈ Ωcandidate, compute φCcandidate with reward function z(·)
9: Compute interaction in each component candidate: I = φCcandidate −

∑
C∈Ccandidate

φC
10: end while
11: Ω′ = ∅
12: Update the component set Ω′ by greedily adding the component candidate with highest interaction strength |I| to Ω′

13: end for

D. Additional experimental results of regional attributions
D.1. Regional attributions computed with different hyper-parameters

In this section, we have compared regional attributions with different hyper-parameters (β and L). The results are shown
as follows. We found that important regions indicated by attributions were similar under the same selection of β, such as
the belly region of the pigeon (in the first row) and the wing region of the jaeger (in the second row). Note that when β
were different, the generated adversarial perturbations would be slightly different, which lead to slightly different regional
attributions. However, compared with the difference between the magnitudes and attributions, the difference between regional
attributions computed with different hyper-parameters was smaller.
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D.2. More experimental results of regional attributions

Experimental results of regional attributions have been shown in Fig. 3 in the paper. In the supplementary material,
we give additional results of regional attributions. The visualization shows that although the distribution of L2 adversarial
perturbations and the distribution of L∞ adversarial perturbations were dissimilar, their regional attributions were similar to
each other.
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E. Comparisons of attributions
There are two types of attributions in the paper, i.e. regional attributions to the attacking cost and pixel-level attributions to

the change of prediction score. We visualize regional attributions to the cost of L2 attacking and L∞ attacking and pixel-wise
attribution to the change of the prediction score (under L2 attacking). In most cases, important regions indicated by these
attributions were similar. For example, in the third row, the dog’s head and the horse’s body were indicated to be important
by all three kinds of attributions. In other cases, important regions indicated by different attributions were different. For
example, important regions of the potted plant in the last row indicated by these three kinds of attributions were dissimilar.
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F. More experimental results of interactions and perturbation components
Experimental results of interactions and perturbation components have been shown in Fig. 4 in the paper. In the supple-

mentary material, we give more examples of visualizations. Perturbation components usually were not aligned with visual
concepts.

�
�
��
�
��
��
��
�	
�	



�
�


�
��
�
��
�
���
��
�	
�	



���
� �����������	
�����������	
�����	�	�� ���
� �����������	

�����������	
�����	�	��

���
� �����������	
�����������	
�����	�	�� ���
� �����������	

�����������	
�����	�	��

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity checks for saliency maps. arXiv

preprint arXiv:1810.03292, 2018.
[2] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and c-shapley: Efficient model interpretation for

structured data. In arXiv:1808.02610, 2018.
[3] Grabisch Michel and Roubens Marc. An axiomatic approach to the concept of interaction among players in cooperative games. In

International Journal of Game Theory, 1999.
[4] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The limitations of deep

learning in adversarial settings. In IEEE European Symposium on Security & Privacy, 2016.
[5] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam:

Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626, 2017.

[6] Lloyd S Shapley. A value for n-person games. In Contributions to the Theory of Games, 2(28):307–317, 1953.
[7] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional

net. arXiv preprint arXiv:1412.6806, 2014.



[8] Die Zhang, Huilin Zhou, Hao Zhang, Xiaoyi Bao, Da Huo, Ruizhao Chen, Xu Cheng, Mengyue Wu, and Quanshi Zhang. Building
interpretable interaction trees for deep nlp models. In AAAI, 2021.


