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In this supplementary material, we firstly provide the im-
plementation details of our proposed P2-Net framework, the
training strategy and dataset pre-processing. Then, the de-
tails of the evaluation metrics for pixel and point matching
are presented. Finally, we report additional quantitative and
qualitative matching results and analyze the changes of de-
scriptor similarity under different network settings.

1. Implementation Details

Network architecture. Our proposed P2-Net for pixel and
point matching consists of two fully convolutional networks
for 2D and 3D feature extraction. In the image (2D) feature
extraction network, we use nine 3 × 3 dilated convolutions
with stride=1 in order to preserve the input resolution at all
stages. The output feature dimensions and dilation rates for
these layers are (32, 32, 64, 64, 128, 128, 128, 128, 128) and
(1, 1, 2, 2, 4, 4, 4, 8, 16), respectively. In the former 6 layers,
we apply LeakyReLU (0.1) after the convolution operation.
In the point cloud feature extraction network, we exploit the
rigid KP-FCNN [8], which is a fully convolutional network
for segmentation. The output feature dimensions in the en-
coder part are set to (64, 128, 256, 512, 1024, 2048). Skip
connections are used between the corresponding layers of
the encoder part and the decoder part. For each layer i, a
cell size ∆i is set to infer other parameters. Here, we adopt
∆0 = 0.015m as the initial cell size. Then, the convolution
radius and the average kernel point radius are automatically
set to 2.5∆i and 1.5∆i. The output features are processed
by a Linear Layer to get the final 128 dimensional descrip-
tors. Besides, we disable batch normalization after all con-
volutions and replace ReLU with LeakyReLU (0.1). Other
settings are kept the same as in the original paper [8].

Training strategy. Our P2-Net is trained with a two-
stage training strategy. Specifically, we enable the detec-
tor to be jointly trained with the descriptor from the second
epoch instead of from the beginning. Our implementation is
trained on a single NVIDIA Tesla V100 card, and the train-

ing process finishes within 10 epochs. During training, the
learning rate exponentially decays with every epoch, and is
thus equal to one-tenth of the base learning rate at comple-
tion. We find that the two-stage training yields faster con-
vergence. To be specific, one-stage training takes approxi-
mately 40 epochs to reach similar results achieved by two-
stage training. Although we have tried different training
strategies, e.g., changing the initial learning rate and adopt-
ing different decay rates, none of them have shown faster
convergence results than the two-stage strategy that simply
enables later training of the detector. This is because, for
accurate keypoint detection, we provide the finest guidance
for the gradient of the similarity. Such a design requires
distinctive descriptors to provide explicit guidance for de-
tection, which is hard to achieve at the beginning of train-
ing. Therefore, to speed up the training, we only focus on
optimizing descriptors for the first epoch and then jointly
train the descriptor and detector.

Dataset preprocessing. Our network requires a dataset
of image and point cloud pairs (I, P ) labelled with 2D-
3D correspondences to train. Based on 7Scene dataset
[4, 7], we firstly follow previous works [11, 10] to obtain
the fused point cloud fragments with 5 consecutive RGB-
D frames. Then we apply grid subsampling with a voxel
size of 0.015m to control the number of points and ensure
the spatial consistency of point clouds. To label the cor-
respondences for (I, P ), we transform pixels to 3D points
by applying its transformation matrix, followed by mutu-
ally searching their nearest neighbors in the corresponding
point cloud fragment lying in the camera frustum. Pixel and
point pairs whose Euclidean distance lie within a threshold
of ∆0 = 0.015m are considered as correspondences. Sim-
ilar to [3], we use the (I, P ) presenting at least 128 corre-
spondences in order to obtain meaningful gradients. Finally,
we generate a total number of 24, 740 image and point cloud
pairs for training, and 1, 591 pairs for testing, with varying
environmental settings. In addition, each point cloud frag-



ment is augmented by adding Gaussian noise with standard
deviation 0.005 only during training. Meanwhile, each in-
put image is standardized to be zero mean and unit norm for
both training and testing.

2. Evaluation Metrics
In order to evaluate and compare the performance of var-

ious loss formulations and different networks on pixel and
point matching, five commonly adopted evaluation metrics
from [6, 3, 2, 5, 11, 1] are used in our evaluation. These
metrics are formulated as:

Inlier ratio denotes the ratio of inliers to all matches,
which is used to evaluate the correspondence quality. Given
a partially overlapped image and point cloud pair M (I, P ),
the correspondence set ΩM for the pair M is obtained by
mutually nearest neighbor search in feature space,

ΩM = {xi ∈ I, yj ∈ P |FI(xi) = NN(FP (yj), FI(I)),

FP (yj) = NN(FI(xi), FP (P ))},
(1)

where FI and FP are two descriptor networks that map the
input (i.e. pixels xi or points yj) to feature descriptors, NN
denotes the nearest neighbor search based on the Euclidean
distance. Finally the inlier ratio of M (IRM ) is defined as,

IRM =
1

|ΩM |
∑

(i,j)∈ΩM

1(||Γ(xi)− T−1yj || < τ2), (2)

in which Γ represents the mapping function that converts
a pixel to its corresponding point under the current camera
coordinate system. T is the ground truth transformation be-
tween the image and point cloud pair M ∈ M. Here, the
correspondence whose spatial distance is less than the inlier
distance threshold τ2 = 0.045m, can be seen as an inlier.

Feature matching recall measures the percentage of im-
age and point cloud pairs that can recover the pose with high
confidence, reflecting the quality of features without using
a RANSAC pipeline. Mathematically, it can be written as

FMR =
1

|M|

|M|∑
M=1

1
(
IRM > τ1

)
, (3)

where τ1 is the inlier ratio threshold of the pair M , which
will be counted as one match if IRM is above τ1 > 0.5.

Keypoint repeatability refers to the percentage of repeat-
able keypoints over all detected keypoints. For a pair M ,
the pixel and point pairs set ΦM is:

ΦM = {xi ∈ I, yj ∈ P |yj = NN(Γ(xi), P )}, (4)

then the keypoint repeatability of M (KRM ) is defined as,

KRM =
1

|ΦM |
∑

(i,j)∈ΦM

1(||Γ(xi)− T−1yj || < τ3). (5)

Figure 1: Performance in relation to the variation of key-
points number (left) and threshold (right).

This means that a keypoint in the image is considered re-
peatable if its spatial distance to the nearest keypoint in the
point cloud is less than a threshold τ3 = 0.02m.

Registration recall represents how many overlapped im-
age and point cloud pairs a matching algorithm can cor-
rectly recover, indicating the quality of features within a
reconstruction system. Specifically, the registration re-
call (Reg) uses the following error metric between esti-
mated pairs M , and corresponding pose T̂ estimated by
PnP+RANSAC to define a true positive:

Reg =

1

|M|

|M|∑
M=1

1
(√√√√ 1

|Ω∗M |
∑

(x∗,y∗)∈Ω∗
M

||Γ(x∗)− T̂−1y∗||2 < τ4
)
,

(6)

where Ω∗M is a set of corresponding ground truth pairs
(x∗, y∗) in M :

Ω∗M = {x∗ ∈ I, y∗ ∈ P}, (7)

and τ4 is set to 0.05m.

Recall denotes the ratio of correct matches over all ground
truth matches. Mathematically, it is expressed as:

RM =
1

|Ω∗M |
∑

(i,j)∈ΩM

1(||Γ(xi)− T−1yj || < τ2), (8)

in which RM represents the Recall for the pair M .

3. Additional Results

The impacts of keypoints and thresholds on perfor-
mance. To better demonstrate the performance of a joint
learning under different settings, we further report the re-
sults in the cases when increasing the sampled point num-
ber from 500 to 5000 and varying the thresholds from 1cm
to 9cm. As shown in Fig. 1, with the increasing number
of keypoints, all evaluation metrics, except Recall, grew ac-
cordingly. This is because, when more keypoints are se-
lected, the ambiguity among them will also increase, which



Figure 2: The positive similarity dp and the most negative
similarity dn changes in different settings.

makes it harder to obtain correct matches. Such results also
indicate that the detected keypoints are properly ranked, and
the top points receive a higher probability to be matched.
This is a desirable property that a reliable keypoint is ex-
pected to acquire. Similarly, if a loose threshold is set, only
Registration Recall maintains the same level, while others
show different improvements. This is because when calcu-
lating this metric, all possible matches are used, which is
not related to the setting of threshold. Overall, our method
shows consistent results with the change of keypoints num-
ber and threshold.

Qualitative examples. Here, we provide visualizations in
Fig. 3 to present the sampled keypoints and a few matches
from different scenes, under various camera motion status
and conditions (e.g., motion blur), perceptual aliasing and
textureless patterns in the room.

Similarity analysis For a better understanding of our pro-
posed loss, we track the changes of the positive similar-
ity dp and the most negative similarity dn∗=max(dn) under
various loss formulations and different networks. Here, dp
and dn actually represent the average value of all sip and all

(max
j

(sI
j
i

n ), max
j

(sP
j
i

n )) in Eq. 8, respectively. The similarity

is calculated from the cosine distance that varies between
[−1, 1] (c.f. Sec. 3.2). For clarity, we use dn to directly
denote dn∗ in the following text. Here, we report the re-
sults of 1) P2-Net trained with our circle-guided descriptor
loss (P2 dp, P2 dn); 2) P2-Net trained with the contrastive
descriptor loss (Cont dp, Cont dn) [1]; 3) P2-Net trained
with the triplet descriptor loss (Tri dp, Tri dn) [3, 6]; 4)
P2-Net replaced with the ASL feature extractor (ASL dp,
ASL dn) [6]; 4) P2-Net replaced with the R2D2 feature ex-
tractor (R2D2 dp, R2D2 dn) [6]. The last two networks are
trained with our circle-guided descriptor loss. Other train-
ing or testing settings are kept the same.

As can be seen in Fig. 2, because pixel and point de-
scriptors are heterogeneous, both dp and dn are extremely
low (often around zero) in the initial phase. When P2-Net
is trained with contrastive or triplet descriptor loss, Cont dp

Volume P2 [2D Map] P2 [3D Map]
Floor 5a 38 m3 72.5% 75.9%
Floor 5b 79 m3 98.3% 99.3%
Average - 85.4% 87.6%

Table 1: Comparisons on selected scenes from 12Scenes
[9]. Percentages of estimated camera poses falling within
the threshold of (5cm, 5°).

and Tri dp will quickly approach Cont dn and Tri dn. Un-
der such cases, the network will lose the ability to distin-
guish dp and dn, resulting in ambiguous convergence. In the
cases that only the 2D feature extractor is replaced, the loss
minimization in network training will tend to synchronously
increase the similarity for both positives and negatives, sac-
rificing the descriptor distinctiveness, which is consistent to
the conclusion in Sec. 4.3. Moreover, because the design of
our detector encourages higher relative scores for distinc-
tive correspondence, such misleading distinctiveness from
the descriptor cannot provide explicit and proper guidance
for the detector at the beginning. In particular, our detector
applies the hardest-in-batch sampling strategy in the global
area, which further increases its dependence on distinctive
descriptors. These also support the adoption of two-stage
training discussed in Sec. 1.

Quantitative results on visual localization. We also eval-
uate our framework with existing settings on sparser point
clouds (3D projected depth maps) from 7Scenes, which
only have 26,805 points on average for a single view at
640×480 resolution. It achieves 63.8% and 60.9% accu-
racy for P2[3D Map] and P2[2D Map], respectively, show-
ing promise for handling sparser point clouds. However, we
note that detailed evaluations on other types of point clouds,
such as the ones obtained from LIDAR, might have differ-
ent characteristics (e.g., much sparser), are a future area for
further investigation.

Furthermore, we have tried our method on a more chal-
lenging 12Scenes dataset [9] with larger scale variation. As
shown in Tab. 1, the scale of scenes varies from 38 m3 to
79 m3, significantly larger than 7Scenes (from 1 m3 to 18
m3). The promising results on 12Scenes also prove the ca-
pability of the proposed approach to handle more difficult
datasets with larger levels of scale variation.

Significance of directly building 2D-3D matches. Our
P2-Net enables directly localizing 2D images in a 3D model
scanned by LIDAR or localizing 3D point clouds in a 2D
Map, which reduces the restrictions for both sensors ex-
ploited for localization and types of pre-built maps. Thus,
it is flexible and practical in real-world usages. Moreover,
our approach would also be useful for interesting applica-
tions such as texture mapping (e.g., mapping pixels from
a texture to a 3D surface) and robotic manipulation (e.g.,
matching images against 3D templates).
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Figure 3: Examples of good pixel and point matches from different scenes.
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