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The supplementary material contains the following parts:
(1) Details of Network: illustrate the architecture details of
our network; (2) Experiments on High-Resolution Image
Inpainting; (3) Additional Ablation Study: provide addi-
tional ablative studies for our network architecture modi-
fications, inpainting priority and representation with high-
resolution; (4) Attention Map Visualization: visualize the
effect of attention fusion method; (5) User Study: pro-
vide user study results to compare our proposed method
and other state-of-the-art methods; (6) Model Complexity
and Inference Time; (7) Additional Qualitative Compari-
son: provide more visual comparison results on CelebA [4],
Paris Street View [1], and Places2 [13] with regular and ir-
regular holes; (8) Additional Quantitative Comparison: pro-
vide additional quantitative comparisons on CelebA.

1. Details of the Proposed Parallel Multi-
Resolution Fusion Network

As shown in Figure 1 in the main text, our whole net-
work contains a starting sub-network and a main body sub-
network. The input of the starting sub-network includes
masked image Im of size 256 × 256 × 3 and correspond-
ing mask M of size 256 × 256 × 1. After a 3 × 3 convo-
lution to Im and M , the extracted features are processed
with a group of 4 residual blocks and finally fed into the
main body sub-network. The residual block consists of two
duplications of PConv 3×3, BatchNorm, ReLU and the in-
put features are summed with output features using a skip
connection.

The main body sub-network (input size 256 × 256)
consists of four parallel branches with four different res-
olutions, in which each branch consists of multiple sub-
networks with one sub-network belonging to one stage. The
information from different branches is exchanged at the end
of each stage. The resolution of the feature map for each
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Settings `1 (%)↓ SSIM↑ PSNR↑ FID↓

HF [8] 2.60 0.896 24.855 111.28
PF [10] 2.07 0.917 26.337 109.13

Ours 1.83 0.925 26.821 107.05

Table 1. Quantitative results on 1024× 1024 images.

branch from high to low is 256, 128, 64, 32, respectively.
For each stage in each branch, we use a group of 4 residual
blocks to extract features. For each residual block, the input
channels and output channels stay the same and the channel
numbers are 32, 64, 128, 256 for resolution 256, 128, 64,
32, respectively. To enlarge the receptive field of the fea-
ture map, we use dilated convolutions in the second and the
third residual block with dilation rates (1, 2) and (4, 8). The
resolution of feature maps in each branch remains the same.
Prior to the last stage, we use the self-attention learned from
all resolution feature maps to guide the refinement of each
resolution. All convolutions used in our network are par-
tial convolutions. The discriminator used in our network is
the same as [12], which contains a self-attention layer and
several convolutional layers, for the detailed structure of the
discriminator, please refer to [12].

2. Performance on High-Resolution Image
We also explore the ability of our model on high-

resolution image inpainting. We qualitatively and quanti-
tatively compare our model with two state-of-the-art high-
resolution inpainting networks: HF [8] and PF [10]. One
hundred images with the size of 1024 × 1024 randomly se-
lected from Places2 [13] are used as the test set. Our model
is retrained on Places2 with 512 × 512 images. The quan-
titative results of the three methods are shown in Table 1
and our method achieves the best results. In Figure 1, we
show the visual comparison results on 1024 × 1024 im-
ages. HF is good at processing images with simple scenes



Figure 1. The visual comparison results on 1024 × 1024 images. Best viewed by zooming in.



Settings `1 (%)↓ SSIM↑ PSNR↑ FID↓

start-first 3.69 0.8354 25.007 7.95

4-stage 3.73 0.8329 25.124 9.18
5-stage 3.67 0.8362 25.283 7.43
7-stage 3.56 0.8407 25.612 7.41
8-stage 3.58 0.8403 25.580 8.02

selected 3.54 0.8410 25.475 6.98

Table 2. Analyses for network architecture.

on ultra-high-resolution image, but has difficulty in dealing
with complex scenes. PF can generate comparable results
with ours, but our results have more delicate textures and
consistent structures.

3. Additional Ablation Study
3.1. Slight Modifications

Recall that compared with [7], we make two slight mod-
ifications to the overall network architecture. Thus, we
conduct two additional ablative studies to prove the effec-
tiveness of our modifications. (1) The network architec-
ture in [7] starts from a high-resolution sub-network as the
first stage, and gradually adds high-to-low resolution sub-
networks one by one to form more stages. Now, tailoring for
image inpainting to focus on both local and global informa-
tion earlier, our network starts from four resolutions at the
beginning. To investigate the effectiveness of this modifi-
cation, we compare the results of the network starting from
one resolution (“start first”) and our network (“selected”).
As shown in Table 2, the selected network structure per-
forms better than the network starting from one resolution.
(2) We found that large missing regions are unable to be re-
paired completely in the shallow network. To guarantee ad-
equate stages for inpainting all types of missing regions, we
conduct experiments to verify the inpainting performance
on 4-stage, 5-stage, 6-stage (“selected”), 7-stage, 8-stage
networks, respectively. In Table 2, it can be seen that the
results generated by 6-stage network are superior to 4-stage
and 5-stage networks. We also observe that 6-stage network
is competitive compared with 7-stage and 8-stage network.
Considering the trade-off between model complexity and
inpainting performance, we finally choose 6-stage network
instead of the network with more stages.

3.2. Inpainting Priority

In this section, we analyze the effect of the inpainting
priority. First, we vary the hyper-parameter δ in Eqn. 6 in
the main text in {0, 0.1, 0.3, 0.5, 0.7, 0.9}. Note that our
method uses δ = 0.5 by default. δ = 0 represents di-
rectly use PConv [2]. In Table 3, we report the inpaint-

Settings `1 (%)↓ SSIM↑ PSNR↑ FID↓ #Stages

322 3.86 0.832 25.024 12.26 -
642 3.81 0.831 24.871 10.49 -
1282 3.61 0.838 25.299 8.61 -

δ = 0.9 3.87 0.831 24.733 12.31 2.86
δ = 0.7 3.62 0.838 25.373 7.43 2.55
δ = 0.3 3.64 0.840 25.267 7.45 1.52
δ = 0.1 3.68 0.836 25.010 8.53 1.00
δ = 0 3.69 0.833 24.898 8.64 1.00

CP 3.65 0.831 24.871 8.51 1.18
RP 3.62 0.836 25.273 7.92 1.64
LP 3.58 0.841 25.370 7.32 2.11

Full-Fledged 3.54 0.841 25.475 6.98 1.95

Table 3. Analyses for inpainting priority and representation with
high-resolution.

ing metrics and the average number of stages the network
takes to completely fill the missing region. We can see
that when δ is large, the network inpaints the missing re-
gion slower (i.e., with more stages). Then we vary the set-
ting of inpainting priority by (a) only using common prior-
ity (CP); (b) only use resolution-specific priority (RP); (c)
replace high-resolution priority with low-resolution prior-
ity (LP). All the results are summarized in Table 3. We
can see that only using common priority (CP) or resolution-
specific priority (RP) will accelerate inpainting the missing
regions, but degrade the quality of generated images. When
replacing high-resolution priority with low-resolution pri-
ority (LP), both inpainting speed and inpainting quality are
compromised.

3.3. Representation with High-Resolution

We analyze the necessity of maintaining high-resolution
representation in image inpainting by comparing the quality
of images output by four branches. For the sake of fairness,
we keep the whole network and use the final stage output of
specific resolution to generate the inpainted images. Taking
resolution 322 as an example, we upsample the feature map
from resolution 322 to resolution 2562, then add a convo-
lution layer with kernel 1 × 1 to output the inpainted im-
ages. The results are shown in Table 3. We can see that
results using low-resolution representations are worse than
those using the highest-resolution representations (our full-
fledged model), which shows the necessity of maintaining
high-resolution representations.

We also show an example of masked image and the order
of inpainting its missing region in Figure 2. In this figure,
we show the masked image (“Masked”), the ground-truth
image (“Truth”), and our inpainted image (“Output”). Re-
sults and masks in different branches (with different reso-
lutions) at different stages are provided. We can see that at
different resolution levels, the order of inpaint the missing



region has different preferences. The low-resolution branch
firstly inpaints the missing regions around the border be-
tween sea and sky, while the high-resolution branches firstly
inpaint the waves on the sea. The missing regions disap-
pear after the third stage. More examples of masked image
and inpainting order are shown in the rest part of Figure 2.
The low-resolution branch firstly inpaints the missing re-
gions with rich structure information (e.g., borders), while
the high-resolution branches firstly inpaint the regions with
more texture information (e.g., grass, hair).

4. Attention Map Visualization

In Figure 3, we visualize the attention map of our
attention-guided representation fusion method. The atten-
tion maps are obtained by averaging the attention score
maps a (in Eqn. 3) of pixels within the masked region. It
can be seen that the masked region attends relevant informa-
tion from unmasked region [11, 8], e.g., wheat land (resp.,
sky) for wheat land (resp., sky).

We also compared our method with a naive fusion
method that simply concatenate the feature maps. The ob-
tained relative L1, SSIM, PSNR, FID of latter are 3.59%,
0.836, 25.320, 8.21. In comparison, relative L1, SSIM,
PSNR, FID of our attention-guide fusion method are 3.54%,
0.841, 25.475, 6.98, which proves the effectiveness of our
attention-guided fusion module.

5. User study

Following [9], we conduct user study on 120 images ran-
domly selected from both datasets, in which every 20 im-
ages are processed with one of six mask groups. 30 sub-
jects with basic background in computer vision are invited
to rank the subjective visual qualities of images. We per-
form three pairwise comparisons for each baseline with our
method: (1) Our method v.s. GC, (2) Our method v.s. EC,
(3) Our method v.s. SF, (4) Our method v.s. HF, (5) Our
method v.s. MEDFE. A total of 120 × 30 = 3600 compar-
isons were conducted for each baseline. The study shows
that 79.30% (2855 out of 3600), 75.47% (2717 out of 3600),
84.50% (3042 out of 3600), 88.14% (3173 out of 3600) and
82.38% (2966 out of 3600) of comparisons preferred our
results over GC, EC, SF, HF, and MEDFE, respectively.

6. Model Complexity and Inference Time

We compare our model complexity and inference time
with compared to other baseline methods as shown in Ta-
ble 4.

Our method has a competitive model size and inference
speed compared with EC. The reason is that our architecture
is capable of parallel processing to reduce running time and
the channels in higher resolution is smaller (L044-045 in the

Figure 2. Samples for the process of inpainting priorities.
”Stage2∼” and ”Stage3∼” which are labeled with ”∼” symbol
represent that the missing area is completely filled in that stage.

supplementary) which does not introduce too many param-
eters. SF has a large model with longer inference time. Al-
though GC and HF has a small model, HF performs worse



Figure 3. Attention map visualization. Best viewed by zooming
in.

GC EC SF HF MEDFE Ours

Inference time (s/frame) 0.048 0.081 0.105 0.024 0.146 0.071
Model size (M) 10.0 27.1 93.7 2.7 130.3 24.3

Table 4. Comparison of model complexity and inference time.

than other methods (See Table 1 and Figure 3 in the main
text) and GC struggles to deal with large mask circumstance
compared to our method.

7. Additional Quantitative Comparison
We conduct an additional quantitative comparison with

GC, EC, SF, and MEDFE on CelebA. The test setting on
CelebA is the same as that on Places2. Note that the re-
sults of MEDFE on CelebA are terrible because the released
pretrained model from MEDFE is trained on center regular
mask. This is also the reason that we omit the qualitative
results of MEDFE on CelebA in Figure 6. From Table 5, it
can be seen that our method outperforms other methods for
all evaluation metrics and all mask ratios.

8. Additional Qualitative Comparison
We conduct more qualitative comparison with GC [9],

EC [5], SF [6], HF [8], MEDFE [3] on CelebA, Paris Street
View, and Places2 with regular and irregular holes. The re-
sults of HF on CelebA and Paris Street View are omitted
since only the pretrained test model on Places2 is officially
released. Figure 4, Figure 5, Figure 6 show the comparison
results on CelebA, Paris Street View, and Places2 respec-
tively. From the results, GC, HF tend to generate results
with distorted content or artifacts. EC is good at main-
taining structural consistency by applying prior edge con-
straints but there exists color discrepancies in some results.
The results of SF have severe color discrepancies. Although
MEDFE takes texture and structure into account, there still
exist some blurry textures and unreasonable semantics. Our

Mask GC [9] EC [5] SF [6] MEDFE [3] Ours

` 1
(%

)↓

0-10% 0.79 0.67 1.52 1.43 0.66
10-20% 1.19 1.08 2.03 2.95 1.05
20-30% 1.83 1.66 2.67 5.16 1.56
30-40% 2.63 2.45 3.36 7.64 2.25
40-50% 3.67 3.47 4.18 10.37 3.06
50-60% 5.78 5.48 5.71 13.91 4.99
Ave% 3.29 3.01 4.09 7.67 2.82

SS
IM

↑

0-10% 0.976 0.981 0.942 0.946 0.983
10-20% 0.951 0.957 0.915 0.877 0.961
20-30% 0.914 0.920 0.882 0.792 0.931
30-40% 0.870 0.878 0.848 0.708 0.893
40-50% 0.819 0.827 0.809 0.622 0.852
50-60% 0.738 0.747 0.747 0.543 0.767
Ave% 0.858 0.865 0.857 0.745 0.875

PS
N

R
↑

0-10% 37.175 37.478 33.715 27.922 38.566
10-20% 32.437 32.629 30.623 23.155 33.447
20-30% 28.838 29.092 28.200 19.918 30.031
30-40% 26.131 26.406 26.281 17.725 27.288
40-50% 23.849 24.120 24.521 16.071 25.441
50-60% 20.714 21.103 21.883 14.482 21.897
Ave% 28.945 29.291 27.537 21.202 30.232

FI
D

↓
0-10% 0.57 0.59 1.00 11.88 0.48
10-20% 1.14 1.01 1.98 33.57 0.88
20-30% 2.84 1.72 3.02 68.56 1.32
30-40% 6.20 2.76 4.13 103.23 2.19
40-50% 11.23 4.26 5.60 136.40 3.98
50-60% 19.88 7.41 8.80 151.64 5.34
Ave% 10.23 4.00 4.10 81.76 2.91

Table 5. Quantitative results of different methods on CelebA.

method generates the most appealing results, which have
fine-grained textures and reasonable structures.
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Figure 4. More visual comparison results on Places2 [13].
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Figure 5. More visual comparison results on Paris Street View. [1]
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Figure 6. More visual comparison results on CelebA [4].


