
Supplementary– PnP-DETR: Towards Efficient Visual Analysis with
Transformers

Tao Wang1,3* Li Yuan4∗ Yunpeng Chen2 Jiashi Feng4 Shuicheng Yan4
1 Institute of Data Science, National University of Singapore 2 Yitu Technology

3 Integrative Science and Engineering Programme, NUS Graduate School, National University of Singapore
4 Department of Electrical and Computer Engineering, National University of Singapore

twangnh@gmail.com ylustcnus@gmail.com yunpeng.chen@yitu-inc.com

jshfeng@gmail.com shuicheng.yan@gmail.com

Computation Saving
Here we show the concrete computation saving by the

abstraction scheme, assume the length of the full feature set
is L = HW and the fraction of abstracted feature length
is r = (N + M)/L. As shown in first row of Tab. 1,
for encoder, since the complexity of self-attention layers is
O(L2) and the complexity of other layers (projection lay-
ers, feed-forward layers, normalization, e.t.c) is O(L),we
assume their actual computation cost is aL2 and bL corre-
spondingly. For the decoder, since the complexity of cross-
attention is O(L2), and the complexity of other parts is not
related to the sequence length L, we assume their costs are
cL and a constant O respectively.

Then with the abstracted feature set F∗ as input, the com-
putation cost of encoder self-attention is quadratically re-
duced to ar2L2, and the cost of other layers is reduced lin-
early to brL. For the decoder, the cross attention cost is
reduced to crL, and the cost of other layers remains as O.
The total computation of encoder compared to the original
is

ar2L2 + brL

aL2 + bL
=
ar2L+ br

aL+ b
∈ (r2, r) (1)

With a larger sequence length L the rate is more close to r2

and more computation is saved.
The total computation of decoder compared to original

is
crL+O

cL+O
=∈ (r, 1) (2)

With a larger sequence length L the rate is more close to r
and more computation is saved.

More Implementations
Here we describe the implementation details about

padding masks and position embedding. For the fine fea-

*Work done during an internship at Yitu Tech.

encoder decoder

input set self-attn o. layers cross-attn o. layers

F aL2 bL cL O
F∗ ar2L2 brL crL O

Table 1. Computation saving by the abstract feature set F∗, com-
pared to the full set F. self-attn and cross-attn indicate the self-
attention and cross-attention layers. o. layers denotes other layers
except for the self-attention and cross-attention.

ture set, we use the same sampling order of poll sampler to
gather the corresponding position embeddings and padding
masks. For the coarse feature set, we set the masks to
False to indicate that they are not paddings and employ
pseudo position embedding by linearly combining position
embeddings of the remaining feature set with the aggrega-
tion weight.

Class-Incremental Sampling on COCO Dataset

In this section, we present the detailed about how we
sample the COCO dataset to obtain a smaller version for
faster experimental validation. The COCO dataset has a
skewed distribution of training image number over object
categories, i.e., some categories have significantly smaller
number of training images. Direct random sampling on
all training images may cause too much loss of images on
those scarce categories and the overall distribution may be
even more biased. The mAP result on the biased dataset
may be unstable and cannot well evaluate the model perfor-
mance. To curcumvent the difficulty and obtain more ef-
fective sampled dataset, we design a new strategy. We rank
the object categories according to their training image num-
ber, then perform an incremental sampling starting from the
most scarce category to the most abundant category. The the
sampling algorithm is given in Algorithm 1. Concretely, for
each category, if the number of training images is more than



Algorithm 1: Class-Incremental Sampling Algorithm.
Initialization:
Cat2ImgID: category to image id list mapping of original dataset (Dict);
PerCatTHR: per category sample image number threshold (Int);
Cat2ImgIdSampled: initialized to be same as Cat2ImgID (Dict);
SampledImgId: empty list (List);
SortedCatId: sorted category id on number of images, ascending (List);
RandomSample(Input,N): randomly sample input list to obtain subset with length N
for Id in SortedCatId do

if Cat2ImgID[Id] > PerCatTHR then
InSampled = [ImgId for ImgId in Cat2ImgID[Id] if ImgId in SampledImgId];
NotInSampled = [ImgId for ImgId in Cat2ImgID[Id] if ImgId not in SampledImgId];
if len(InSampled) < PerCatTHR then

Cat2ImgIdSampled[Id]=InSampled+RandomSample(NotInSampled, PerCatTHR-len(InSampled))
else

Cat2ImgIdSampled[Id]=InSampled
end

end
SampledImgId+=Cat2ImgIdSampled[Id]

end

2000
1000
500

- original PerCatTHR-2000 PerCatTHR-1000 PerCatTHR-500

Total Image Num. 118k 74k 39k 19k

Figure 1. Training image number distribution of the sampled COCO dataset obtained by the proposed class incremental sampling.

a sampling threshold number and the number of already
sampled images for this category is less than the threshold
number, then a sampling will be performed to obtain ad-
ditional training images for reaching the threshold number.
As shown in Fig. 1 is the distributions of obtained sampled
versions of the COCO dataset, with different setting of the
sampling threshold. The sampled dataset will be smaller
given a smaller threshold. We use a sampling threshold of
500 to obtain a sampled COCO and conduct all the abla-
tion experiments on the dataset. With the designed incre-
mental sampling, the distribution of training images over
most object categories is roughly uniform, and thus can be
used to more stablly evaluate model performance than a ran-
domly sampled sub-dataset while saving enormous experi-

ment time.

Additional Ablations

Pool Sample Number M and Poll Sample Ratio α To
individually examine the effect ofM and α, we conduct fol-
lowing experiments: 1) varyingM by fixing α. As shown in
Tab. 2, compared to the model with only poll sample feature
vectors (M -0), adding 30 pool feature vectors gets about 1
AP improvement, but whenM is larger than a certain value,
the improvement is diminished (i.e., 60). This phenomenon
indicates that a small number of summarized feature vec-
tors for the background contextual information is enough.
2) varying α by fixing M . As shown in Tab. 3, when the



- AP AP50 AP75 APs APm APl

baseline 29.1 48.0 29.5 10.9 30.9 44.2
M -0 27.3 46.7 27.4 9.4 29.0 42.9
M -30 28.3 47.9 28.7 10.4 29.9 43.4
M -60 28.7 48.4 29.3 10.5 30.6 44.4
M -120 28.8 48.4 29.2 10.8 30.4 44.4

Table 2. Effect of pool sample number (M ), with ResNet-50 back-
bone. The poll sample ratio α is fixed at 0.33.

- AP AP50 AP75 APs APm APl

baseline 29.1 48.0 29.5 10.9 30.9 44.2
α-0.1 25.2 44.7 24.2 8.1 26.0 40.9
α-0.2 27.1 46.4 27.3 9.6 29.0 43.0
α-0.3 28.7 48.4 29.3 10.5 30.6 44.4
α-0.5 29.2 48.6 29.2 10.8 30.3 44.1
α-0.7 29.1 48.2 29.3 11.0 30.9 44.1

Table 3. Effect of poll sample ratio (α), with ResNet-50 backbone.
The pool sample number M is set as 60. The result is obtained
with fixed poll ratio training.

poll ratio α is small, increasing it significantly improves
the performance (e.g., 25.2 AP to 27.1 AP by increasing
α from 0.1 to 0.2). This observation shows the importance
of fine information for detecting the objects. When α is
larger than about 0.5, the performance improvement is di-
minished, which is as expected since the feature vectors that
rank lower mostly correspond to the background locations,
and thus the gain from including fine information on those
locations is small.

Different Architecture of Scoring Network As shown
in Tab. 4 is the result of different network architecture of
the scoring network of the poll sampler, increasing the layer
number from 1 to 2 improves the AP by 0.8 (i.e., 1-layer-
fc and 2-layer-fc-256.). This is likely because the 2-layer
network much more accurately predict the informativeness
score. Further increasing the layer number gives diminished
gain, i.e., 28.8 vs. 28.7 AP for 3-layer-fc-256 and 2-layer-
fc-256. We also tried decreasing the hidden neuron unit
number from 256 to 32, which reduces the computation, but
the performance decreased, i.e., 28.2 for the 2-layer-fc-32
scoring network, which is 0.6 lower than the 2-layer-fc-256
network in AP. We choose the 2-layer-fc-256 network as the
default architecture of the score network.

Pool Sampler on The Full Feature Set While the pro-
posed pool sampler operates on the non-sampled feature
vectors of the poll sampler, it is interesting to see if directly
applying the pool sampler on the full feature set for gener-
ating the coarse feature set would be better. As shown in
Tab. 5, such setting leads to about 0.5 AP drop compared to
the proposed two-step setting. This may be caused by the
redundant information that have been captured by the fine

ScoreNet AP AP50 AP75 APs APm APl

1-layer-fc 27.9 47.5 28.3 10.0 29.6 43.2
2-layer-fc-256 28.7 48.4 29.3 10.5 30.6 44.4
3-layer-fc-256 28.8 48.4 29.4 10.3 30.7 44.6
2-layer-fc-32 28.2 48.0 29.1 9.9 30.4 44.0

Table 4. The effect of different scoring network architecture.
For example, 1-layer-fc denotes 1-layer fully connected network
(MLP), 2-layer-fc-256 means 2-layer fully connected network
with 256 hidden neuron unit.

- AP AP50 AP75 APs APm APl

pool-after-poll 28.7 48.4 29.3 10.5 30.6 44.4
pool-full-set 28.2 47.5 28.7 10.5 29.9 43.2

Table 5. Result of applying pool sampler on the full feature set,
compared to the proposed pool-after-poll design.

- poll (proposed) random uniform direct-interp

w/o pool 27.3 22.9 25.9 26.1
w pool 28.7 23.9 26.2 -

Table 6. Different alternative methods of the proposed poll sam-
pling. The sampling ratio is set to 0.33 for all methods. w/o pool
means removing the pool sampler. The random sampling result is
obtained by an average of 3 runs.

feature vectors from polled samples.

Comparing the Proposed Sampling Strategies to Some
Alternative Methods We compare the proposed poll
sampler to some baseline alternatives including 1) ran-
dom sampling: for each image, randomly sample the same
amount of locations as the poll sampler and fix the sam-
pled locations for training and evaluation. 2) uniform
grid sampling: uniformly sample the 2D locations with
equal interval. We adopt a general sampling mapping of
b i√

r
cb j√

r
c, i = 0, 1, ..., bW ∗

√
rc, j = 0, 1, ..., bH ∗

√
rc

(H ,W are the height and width of the feature map and r is
the sampling ratio). With some specific poll ratio, the sam-
pling is equavalent to MaxPooling, e.g., r = 1/4 is equava-
lent to MaxPooling with kernel size 1 and stride 2. 3) direct
interpolation: use interpolation to directly resize the fea-
ture map to target size (dH/

√
re, dW/

√
re). As shown in

Tab.6, compared to proposed ranking based poll sampling,
random sample leads to a large drop in AP, i.e., 22.9 vs 27.3
for the without pool sampling setting and 23.9 vs 28.7 for
the with pool sampling setting. Uniform grid sampling and
direct interpolation also generate lower performance than
poll sampling, e.g., 25.9 and 26.1 compared to 27.3 under
the without pool sample setting. The result shows the pro-
posed poll sampler learns effective sampling policy and is
better than those simple baselines.


