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Output Size Layer Name PVT-Tiny PVT-Small PVT-Medium PVT-Large

Stage 1 H
4

× W
4

Patch Embedding P1 = 4; C1 = 64

Transformer
Encoder

 R1 = 8
N1 = 1
E1 = 8

× 2

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

Stage 2 H
8

× W
8

Patch Embedding P2 = 2; C2 = 128

Transformer
Encoder

 R2 = 4
N2 = 2
E2 = 8

× 2

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 8

Stage 3 H
16

× W
16

Patch Embedding P3 = 2; C3 = 320

Transformer
Encoder

 R3 = 2
N3 = 5
E3 = 4

× 2

 R3 = 2
N3 = 5
E3 = 4

× 6

 R3 = 2
N3 = 5
E3 = 4

× 18

 R3 = 2
N3 = 5
E3 = 4

× 27

Stage 4 H
32

× W
32

Patch Embedding P4 = 2; C4=512

Transformer
Encoder

 R4 = 1
N4 = 8
E4 = 4

× 2

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

Table A1: Detailed settings of Pyramid Vision Transformer (PVT) series. The design follows the two rules of ResNet [5].
(1) With the growth of network depth, the hidden dimension gradually increases, and the output resolution progressively
shrinks; (2) The major computation resource is concentrated in Stage 3.

A1. Details of PVT Series
As described in Sec. 3, the hyper-parameters of our Pyra-

mid Vision Transformer (PVT) are listed as follows:

• Pi: the patch size of Stage i;
• Ci: the channel number of the output of Stage i;
• Li: the number of encoder layers in Stage i;
• Ri: the reduction ratio of the SRA in Stage i;
• Ni: the head number of the SRA in Stage i;
• Ei: the expansion ratio of the feed-forward layer [9] in

Stage i;

Following the design rules of ResNet [5], we (1) use small
output channel numbers in shallow stages; and (2) concen-
trate the major computation resource in intermediate stages.
To provide instances for discussion, we describe a series
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Tong Lu (lutong@nju.edu.cn).

of PVT models with different scales, namely PVT-Tiny, -
Small, -Medium, and -Large, in Table A1, whose parameter
numbers are comparable to ResNet18, 50, 101, and 152 re-
spectively.

A2. Pure Transformer Semantic Segmentation

We build a pure Transformer model for semantic seg-
mentation by combining our PVT with Trans2Seg [12], a
Transformer-based segmentation head. According to the
experimental settings in Sec. 5.3, we perform experiments
on ADE20K [15] with 40k iterations training, single scale
testing, and compare it with ResNet50+Trans2Seg [12]
and DeeplabV3+ [2] with ResNet50-d8 (dilation 8) and -
d16(dilation 8), as shown in Table A2.

We find that our PVT-Small+Trans2Seg achieves 42.6
mIoU, outperforming ResNet50-d8+DeeplabV3+ (41.5).
Note that, ResNet50-d8+DeeplabV3+ has 120.5 GFLOPs
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Method #Param (M) GFLOPs mIoU (%)
ResNet50-d8+DeeplabV3+ [2] 26.8 120.5 41.5
ResNet50-d16+DeeplabV3+ [2] 26.8 45.5 40.6
ResNet50-d16+Trans2Seg [12] 56.1 79.3 39.7
PVT-Small+Trans2Seg 32.1 31.6 42.6(+2.9)

Table A2: Performance of the pure Transformer se-
mantic segmentation pipeline. We build a pure Trans-
former detector by combining PVT and Trans2Seg [12].
It is 2.9% higher than ResNet50-d16+Trans2Seg and 1.1%
higher than ResNet50-d8+DeeplabV3+ with lower GFlops.
“d8” and “d16” means dilation 8 and 16, respectively.

Method Scale GFLOPs Time
(ms)

RetinaNet 1x
AP AP50 AP75

ResNet50 [5] 800 239.3 55.9 36.3 55.3 38.6

PVT-Small (ours) 640 157.2 51.7 38.7 59.3 40.8
800 285.8 76.9 40.4 61.3 43.0

Table A3: Latency and AP under different input scales.
“Scale” and “Time” denote the input scale and time cost
per image. When the shorter side is 640 pixels, the PVT-
Small+RetinaNet has a lower GFLOPs and time cost (on a
V100 GPU) than ResNet50+RetinaNet, while obtaining 2.4
points better AP (38.7 vs. 36.3).

due to the high computation cost of dilated convolution, and
our method has only 31.6 GFLOPs, which is 4 times fewer.
In addition, our PVT-Small+Trans2Seg performs better than
ResNet50-d16+Trans2Seg (mIoU: 42.6 vs. 39.7, GFlops:
31.6 vs. 79.3). These results prove that a pure Transformer
segmentation network is workable.

A3. Supplementary Ablation Study
A3.1. Settings

The experimental settings are the same as those in Sec.
5.5.

A3.2. Speed Analysis

On COCO, the shorter side of the input image is 800
pixels. Under this condition, the inference speed of Reti-
naNet based on PVT-Small is slower than the ResNet50-
based model. A direct solution for this problem is to reduce
the input scale. As reported in Table A3, when reducing
the shorter side of the input image to 640 pixels, the model
based on PVT-Small runs faster than the ResNet50-based
model (51.7ms vs., 55.9ms), with 2.4 higher AP (38.7 vs.
36.3).

A3.3. Deeper vs. Wider

The problem of whether the CNN backbone should go
deeper or wider has been extensively discussed in previ-
ous works [5, 13]. Here, we explore this problem in our
Transformer backbone. For fair comparisons, we use PVT-
Small as the baseline and design a deeper model and a wider

Method #Param
(M) Top-1 RetinaNet 1x

AP AP50 AP75

Wider PVT-Small 46.8 19.3 40.8 61.8 43.3
Deeper PVT-Small 44.2 18.8 41.9 63.1 44.3

Table A4: Deeper vs. Wider. “Top-1” denotes the top-1 er-
ror on the ImageNet validation set. “AP” denotes the bound-
ing box AP on COCO val2017. The deeper model obtains
better performance than the wider model under comparable
parameter number.
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Figure A1: AP curves of RetinaNet on COCO val2017
under different backbone settings. Top: using weights
pre-trained on ImageNet vs. random initialization. Bottom:
PVT-Small vs. ResNet50 [5].

model, whose parameters are comparable. For the deeper
model, we choose PVT-Medium. For the wider model, we
multiply the hidden dimensions {C1, C2, C3, C4} of PVT-
Small by a scale factor 1.4, to make it have an equivalent
parameter number to the deeper model (i.e., PVT-Medium).
As shown in Table A4, the deeper model (i.e., PVT-
Medium) consistently works better than the wide model on
both ImageNet and COCO. Therefore, going deeper is more
effective than going wider in the design of PVT. Based on
this observation, in Table A1, we develop PVT models with
different scales by simply increasing the model depth.

A3.4. Pre-trained Weights

Most dense prediction models (e.g., RetinaNet [7]) rely
on the CNN backbone whose weights are pre-trained on Im-
ageNet. We also discuss this problem in our Transformer
bacbkone. At the top of Figure A1, we plot the valida-
tion AP curves of PVT-Small+RetinaNet w/ (red curves)



Method #Param
(M) GFLOPs Mask R-CNN 1x

APm APm
50 APm

75

ResNet50+GC r4 [1] 54.2 279.6 36.2 58.7 38.3
PVT-Small (ours) 44.1 304.4 37.8 60.1 40.3

Table A5: PVT vs. CNN w/ non-local. APm denotes
mask AP. Under similar parameter nubmer and GFLOPs,
our PVT outperform the CNN backbone w/ Non-Local
(ResNet50+GC r4) by 1.6 APm (37.8 vs. 36.2).

and w/o (blue curves) pre-trained weights. We find that the
model w/ pre-trained weights converges better than the one
w/o pre-trained weights, and the gap between their final AP
reaches 13.8 under the 1× training schedule and 8.4 under
the 3× training schedule and multi-scale training. There-
fore, like CNN-based models, pre-training weights can also
help PVT-based models converge faster and better. More-
over, at the bottom of Figure A1, we also see that the con-
vergence speed of PVT-based models (red curves) is faster
than that of ResNet-based models (green curves).

A3.5. PVT vs. “CNN w/ Non-Local”

To obtain a global receptive field, some well-engineered
CNN backbones, such as GCNet [1], integrate the non-local
block in the CNN framework. Here, we compare the perfor-
mance of our PVT (pure Transformer) and GCNet (CNN w/
non-local), using Mask R-CNN for instance segmentation.
As reported in Table A5, we find that our PVT-Small out-
performs ResNet50+GC r4 [1] by 1.6 points in APm (37.8
vs. 36.2), and 2.0 points in APm

75 (38.3 vs. 40.3), under com-
parable parameter number and GFLOPs. There are two pos-
sible reasons for this result:

(1) Although a single global attention layer (e.g., non-
local [11] or multi-head attention (MHA) [9]) can ac-
quire global-receptive-field features, the model perfor-
mance keeps improving as the model deepens. This indi-
cates that stacking multiple MHAs can further enhance the
representation capabilities of features. Therefore, as a pure
Transformer backbone with more global attention layers,
our PVT tends to perform better than the CNN backbone
equipped with non-local blocks (e.g., GCNet).

(2) Regular convolutions can be deemed as special in-
stantiations of spatial attention mechanisms [16]. In other
words, the format of MHA is more flexible than the regular
convolution. For example, for different inputs, the weights
of the convolution are fixed, but the attention weights of
MHA change dynamically with the input. Thus, the features
learned by the pure Transformer backbone full of MHA lay-
ers, could be more flexible and expressive.

A4. Detection & Segmentation Results
In Figure A2, we also present some qualitative ob-

ject detection and instance segmentation results on COCO

val2017 [8], and semantic segmentation results on
ADE20K [15]. These results indicate that a pure Trans-
former backbone (i.e., PVT) without convolutions can also
be easily plugged in dense prediction models (e.g., Reti-
naNet [7], Mask R-CNN [4], and Semantic FPN [6]), and
obtain high-quality results.

A5. Discussion
Question 1: Compared to the 3×3 convolution, the atten-
tion layer has fewer parameters but larger FLOPs. Accord-
ingly, the computational cost of PVT seems to be larger than
ResNet [5], when the parameter number is equal.
Answer: The computational cost (FLOPs) depends on the
input resolution. As shown in Figure 5, when the input
scale is less than 640×640 pixels, the FLOPs of PVT-Small
is similar to ResNet50, and significantly lower than ViT-
Small [3]. Even when the input scale is up to 800×800
pixels, the FLOPs gap between PVT-Small and ResNet50
is still insignificant. These results indicate that under the
medium input scale, the computational overhead of our
model is similar to ResNet50 with a comparable parame-
ter number, and lower than ViT. There are two reasons as
follows:

(1) Unlike the original MHA that requires a large com-
putational resource, the SRA in our model even has lower
FLOPs than the 3×3 convolution with a similar parameter
number, when the input scale is small.

(2) The main parameters and calculations in our model
are contributed by feed-forward layers [9], whose parame-
ter number and FLOPs are similar to the common convolu-
tion.

Finally, we point out that because the operations of
Transformer and CNN are different, it is difficult to keep all
indicators (e.g., parameter number and FLOPs) the same.
In this work, we mainly discuss the models from the aspect
of the number of learnable parameters, which is one of the
most important indicators of a model.

Question 2: Why not employ other efficient attention lay-
ers (e.g., linear attention [10], sparse attention [14] and de-
formable attention [17]), and improve the position embed-
ding in PVT?
Answer: In this work, we target to introduce the pyramid
framework into Transformer, for dense prediction tasks.
To verify the effectiveness of the pyramid structure Trans-
former, we keep the original Transformer [9] and ViT [3]
settings as much as possible when designing our model.

In summary, this work is mainly focused on the over-
all framework of Transformer, and for the specific modules
(e.g., attention layer and position embedding), we would
like to leave it to our future work.
Question 3: What are the future directions worth exploring
for the vision Transformer backbone?
Answer: There are many potential directions, including but
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Figure A2: Qualitative results of object detection and instance segmentation on COCO val2017 [8], and semantic
segmentation on ADE20K [15]. The results (from left to right) are generated by PVT-Small-based RetinaNet [7], Mask
R-CNN [4], and Semantic FPN [6], respectively.

not limited to the following three aspects:

(1) Efficient Attention. Due to the limitation of the at-
tention layer, it is difficult for the Transformer backbone to
process high-resolution input images. Therefore, it is im-
portant to explore more effective attention mechanisms for
image processing.

(2) Position Embedding. Both ViT and PVT use a set
of randomly initialized parameters as the position embed-
ding, which is inflexible and sub-optimal for input images
of arbitrary resolution. Therefore, a more flexible position
embedding for 2D/3D images is required.

(3) Pyramid Structure. Our PVT is just a starting point
of the pyramid structure Transformer. We believe there are
many potential technologies to be explored in the future,
and there would be a more elegant and more effective solu-

tion than PVT.
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