
7. Appendix
7.1. Spearman Correlation on NAS-Bench-201

We also plot the Spearman ranking correlation between
the ranking of architectures at current epoch and that of
fully trained ones for every training epoch. As showing in
Figure 4, the ranking correlation reaches 0.6 only after a
few epochs of training and increases steadily after that on all
three datasets. The trajectory of ranking correlation serves
as an extra piece of evidence that shows we can terminate
the training of architectures at early stages to save the re-
sources without a big sacrifice of the search performance.
Moreover, due to the multi-level nature of the NOSH algo-
rithm, each level obtains a more accurate ranking between
architectures than previous levels. At the top level, architec-
tures will be fully trained, leading to the true ranking among
them in terms of the final validation accuracy.

Figure 4: Spearman ranking correlation between the valida-
tion accuracy of partially and fully trained architectures on
NAS-Bench-201.

7.2. Search Spaces
NAS-Bench-101 NAS-Bench-101 [46] is a generic cell-
based search space where the searchable operations are de-
fined on the nodes in the cell, and the edges denote the
data flow. Each searchable cell includes seven nodes, with
the first being the input node and the last being the output
node. There are four operations for each searchable node in
this search space: conv 1x1, conv 3x3, conv 5x5 and
max pool 3x3, with conv 5x5 approximated by two
conv 3x3s. NAS-Bench-101 contains architectures with
any arbitrary DAG structure between the input and output
node with at most nine edges.

NAS-Bench-201 The search cell in NAS-Bench-201 con-
sists of five nodes (two input/output nodes and three inter-

mediate nodes) and six edges. Unlike NAS-Bench-101, the
operations are defined on edges in this space, and nodes
represent data flow. Each edge is associated with one of
the five operations: none, skip, conv 1x1, conv 3x3,
and avg pool 3x3. Since we use the same GIN en-
coder as arch2vec [45], we follow their method to trans-
form this operation-on-the-edge representation into a graph
where nodes present searchable operations and edges repre-
sent the data flow to match NAS-Bench-101. We refer the
reader to the original arch2vec paper [45] for further details.

The maximum training epoch on all three datasets is set
to 200. However, for CIFAR-10, NAS-Bench-201 also pro-
vides a 12-epoch version, where architectures are trained
for only 12 epochs with the learning rate scheduled ac-
cordingly. They use this version to bench its baselines on
CIFAR-10. Therefore, for fair comparisons, we also use the
12-epoch version of CIFAR-10 for the main results in our
experiment on NAS-Bench-201.

The DARTS Space Similar to NAS-Bench-201, the
DARTS space [23] is an operation-on-the-edge space.
Each cell contains six nodes, including two Input/Output
nodes and four intermediate nodes. There are 14 possible
edges in this search space, and eight of them will be
selected to form an architecture. Every edge is associated
with one of the following eight possible operations: none,
skip connect, avg pool 3x3, max pool 3x3,
sep conv 3x3, sep conv 5x5, dil conv 3x3, and
dil conv 5x5. For the DARTS space, we also transform
its DAG into the unified graph representation where nodes
present searchable operations and edges represent the data
flow as done in NAS-Bench-201 [45].

7.3. Extended Discussion on Related Works
In this work, we focus on task-agnostic methods for im-

proving the efficiency of predictor-based NAS. However, it
is also possible to leverage task-specific prior knowledge to
speed up architecture search. For example, FCOS [37] at-
tempts to improve the search efficiency of RL-based NAS
method on Object Detection tasks using fixed backbones
and proxy tasks on VOC. Since the techniques proposed in
these works are task-dependent, we could not compare them
with our method or previous SOTA NAS algorithms in the
main experiments.

The concept of pausing and resuming the training of
a candidate has been explored in Bayesian Optimization
[34]: FTBO [34] tries to decide when to pause or resume
the training of a configuration via learning curve prediction.
In comparison, NOSH adopts a fixed schedule for simplic-
ity. In this sense, FTBO can be viewed as an orthogonal
work to ours, and it might be an interesting future direc-
tion to study if FTBO could be applied to our framework to
decide the NOSH schedules adaptively. Moreover, FTBO



focuses on the Hyperparameter Optimization task, whereas
we mainly study Neural Architecture Search.

Neural Predictor [39] (NeuralPred) is an early and ar-
guably the most straightforward predictor-based NAS al-
gorithm. It trains a neural network predictor on a pool
of N fully trained architectures at once, and use it to
propose K new architectures. The total budget reported
is > 100 architectures, which is higher than the latest
SOTA predictor-based methods we compared with, such as
arch2vec-BO [45] and BANANAS [40]. Moreover, Neu-
ralPred focuses on the ProxylessNAS search space rather
than the widely used DARTS Space. For these reasons, we
exclude the comparison with this method in the main exper-
iments. We encourage the readers to check out their paper
for further details.

7.4. Extra Details on the Experimental Settings
Ranker Network As visualized in Figure 3, the ranker
network consists of two MLPs on top of a pair of Siamese
five-layer GIN encoders with shared weights. The GIN en-
coder produces a 16-dimensional embedding for each archi-
tecture. And the feature embeddings from two architectures
are concatenated into a 32-dim feature. The first MLP trans-
forms this feature into a 64-dim hidden vector, which will
then be mapped to a 2-dim output by the second MLP. The
GIN encoders are pretrained using reconstruction loss fol-
lowing arch2vec [45]; We refer the readers to their paper for
further details of the pretraining step.

We train the ranker network with a batch size of 10 for
100 epochs using Binary Cross-Entropy loss and Adam op-
timizer. The learning rate is set as 0.01 and annealed to
0.00001 with a cosine schedule.

Train-free prior scores Abdelfattah et al. [1] demon-
strates that several metrics previously used for network
pruning [35] can serve as rough measures of architecture
performance without training. In this work, we use the
magnitude of model weights at initialization as our prior
score due to its simplicity, although more complex and
advanced metrics can be deployed to further improve the
performance. Concretely, after the network is initialized,
we sum up the magnitude of its weights and use it as the
score. The implementation is taken directly from the offi-
cial Synaptic-Flow [35] repo: https://github.com/
ganguli-lab/Synaptic-Flow.

Search algorithm When proposing new architectures, we
also deploy explicit exploration as done in BRP-NAS [12].
Concretely, the K proposals are constructed by selecting
the top K

2 architectures using global ranking and randomly
sampling the rest half from the top 2K architectures (ex-
cluding top K

2 to avoid duplicates). This strategy allows

RANK-NOSH to explore more diverse architectures in the
search space.

7.5. Complementary Results to Ablation Study

Table 8: Validation Accuracy of final architectures
from RANK-NOSH on CIFAR-10, CIFAR-100 and
ImageNet16-120 under various schedules and move ratios.
Our method is relatively stable across various E and r on
all three datasets.

Dataset E Search Budget Valid Accuracy (%)

CIFAR-10

(10,50,200) 6,750 91.60± 0.03
(10,50,100,200) 5,550 91.60± 0.02
(5,25,50,200) 4,075 91.59± 0.03
(5,10,25,200) 3,400 91.57± 0.06

CIFAR-100

(10,50,200) 6,750 73.49± 0.00
(10,50,100,200) 5,550 73.49± 0.00
(5,25,50,200) 4,075 73.42± 0.22
(5,10,25,200) 3,400 73.42± 0.15

ImageNet16-120

(10,50,200) 6,750 46.42± 0.08
(10,50,100,200) 5,550 46.37± 0.00
(5,25,50,200) 4,075 46.47± 0.16
(5,10,25,200) 3,400 46.33± 0.27

(a) Under different E

Dataset r Search Budget Valid Accuracy (%)

CIFAR-10

0.7 9,750 91.58± 0.06
0.6 7,400 91.59± 0.06
0.5 5,550 91.60± 0.02
0.4 4,100 91.58± 0.08
0.3 2,950 91.40± 0.16

CIFAR-100

0.7 9,750 73.49± 0.00
0.6 7,400 73.46± 0.11
0.5 5,550 73.49± 0.00
0.4 4,100 73.46± 0.11
0.3 2,950 72.80± 0.5

ImageNet16-120

0.7 9,750 46.43± 0.13
0.6 7,400 46.50± 0.25
0.5 5,550 46.37± 0.00
0.4 4,100 46.40± 0.08
0.3 2,950 46.17± 0.5

(b) Under different r

We include extra ablation study results in this section.
All experiments are conducted by running the search algo-
rithm for 10 random seeds, as done in Section 5.

Results on other datasets We provide ablation study re-
sults for NOSH schedules on all three datasets on NAS-
Bench-201. As shown in Table 8, RANK-NOSH is sta-
ble under a wide range of schedules and move ratios across
datasets.

Effectiveness of the ranker model in RANK-NOSH To
leverage the non-uniform signals produced by the NOSH
algorithm, we adopt a ranker model as the performance pre-
dictor, optimized with discrete pairwise ranking loss. Com-
pared with regression models, one potential downside of
discrete pairwise loss is that it discards the fine-grain nu-
merical values of validation accuracy. However, ranking-
based methods also increase sample efficiency by creating
O(N2) (pairs of) data points out of N original samples,
which may cancel out the loss of fine-grain information.

https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/ganguli-lab/Synaptic-Flow


Empirically, we observe a net gain of the adopted ranker
model over the regression model used in arch2vec. To show
this, we compare RANK with arch2vec at full budget (i.e.,
without early stopping or NOSH). As shown in Table 9, the
ranker model alone leads to a near-oracle validation accu-
racy of 91.6%/73.49%/46.71%, outperforming arch2vec-
BO.

Table 9: Validation accuracy (%) of the final architectures
obtained by RANK and arch2vec-BO at full budget on
NAS-Bench-201.

Dataset Search Budget arch2vec-BO RANK-NOSH
CIFAR-10 20,000 (100%) 91.48± 0.16 91.60± 0.02
CIFAR-100 20,000 (100%) 73.29± 0.41 73.49± 0.00
ImageNet16-120 20,000 (100%) 46.27± 0.39 46.71± 0.12

Effectiveness of the NOSH algorithm in RANK-NOSH
To further validate the necessity of NOSH algorithm over
naive early stopping (ES), we compare RANK-NOSH with
RANK-ES, i.e., replace the NOSH algorithm in the pro-
posed method with early stopping. As shown in Ta-
ble 10, RANK-NOSH consistently outperforms RANK-ES,
demonstrating that the NOSH algorithm is critical to our
framework. Note that from Table 6 and Table 10, we can
see that the performance of ES is quite unstable over multi-
ple runs; We conjecture that it is because the noisy signals
produced by early stopping might mislead both predictor
and final selection, resulting in much larger variances.

Table 10: Validation accuracy (%) of the final architectures
obtained by RANK-NOSH v.s. RANK-ES on NAS-Bench-
201.

Dataset Search Budget RANK-ES RANK-NOSH
CIFAR-10 2,969 91.16± 0.32 91.56± 0.07
CIFAR-100 2,969 72.46± 0.30 73.44± 0.09
ImageNet16-120 2,969 45.42± 1.01 46.43± 0.21

7.6. Discovered Architectures
The best architecture discovered by RANK-NOSH on

the DARTS space is visualized in Figure 5. As mentioned
in the main text, we follow arch2vec [45] and use the same
cell for both reduction and normal cells.

c_{k-2}

0

sep_conv_3x3 1

skip_connect

3

skip_connect

c_{k-1} sep_conv_5x5
sep_conv_5x5

2
avg_pool_3x3

sep_conv_3x3

sep_conv_5x5
c_{k}

Figure 5: Cell Discovered by RANK-NOSH on the DARTS
space.


