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The structure of this supplementary material is as fol-

lows. Section 1 introduces the structure of our network and
spatial-aware trilinear interpolation . Section 2 gives more
details on the definition of the loss function. More com-
parison results and additional analysis are demonstrated in
Section 3.

1. Methodology
Self-adaptive two-head weight predictor. Our self-

adaptive two-head weight predictor adopts a UNet-style
structure, consisting of an encoder for features compres-
sion and a decoder for pixel-wise category prediction. Skip
connections concatenate output features from encoder lay-
ers to corresponding decoder layers, and the detailed struc-
ture is illustrated in Figure 1. Additionally, we also intro-
duce another predictor for image-leval scenes categoriza-
tion, whose input is compressed global features from the
encoder. Its architecture is listed in Table 1, where feature
size C ×H ×W denotes the corresponding layers produce
features with C channels of shape H × W and T is the
number of image-leval scenes.

Layer Feature Size
Global Feature 256× 1× 1
FC with LeakyRelu 128× 1× 1
Instance Norm 128× 1× 1
FC with LeakyRelu 64× 1× 1
Instance Norm 64× 1× 1
FC with LeakyRelu T × 1× 1

Table 1: Network architecture of scenes category predictor
in the self-adaptive two-head weight predictor.

Spatial-aware trilinear interpolation. The core idea
of 3D LUT is to retouch input images according to some
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compressed parameters(i.e., LUTs), which means that one
element in 3D Lattice may correspond to multiple neighbor-
hood elements. So an additional operation is needed to im-
prove the smoothness of the enhanced results. Considering
the efficiency the performance, trilinear based interpolation
is used in our method.

Let Xh,w = {Xh,w,r, Xh,w,g, Xh,w,b} be a pixel in
input image at location (h,w). Whatever RGB values it
has, there would be eight nearest neighbours when Xh,w

is mapped into a 3D LUT. The minimum coordinate for
eight neighbours (i, j, k) in a 3D LUT is obtained through a
lookup operation with its RGB value (Ir, Ig, Ib) as follows:

i′ =
Xh,w,r

∆
, j′ =

Xh,w,g

∆
, k′ =

Xh,w,b

∆
i = bi′c, j = bj′c, k = bk′c (1)

where ∆ = Cmax/(N − 1), Cmax is the maximum color
value and b·c is the floor function. Distance between its
exact coordinate and the minimum neighbour coordinate are
defined as dri , d

g
j , d

b
k.

dri = i′ − i, dgj = j′ − j, dbk = k′ − k

dri+1 = 1− dri , d
g
j+1 = 1− dgj , d

b
k+1 = 1− dbk (2)

Combining the Equation 2(image level scenario adapta-
tion) and Equation 3(pixel-wise category fusion) in our pa-
per, the interpolated output {Y h,w,c|c ∈ {r, g, b}} at lo-
cation (h,w) can be obtained as follows. Owning to the
spatial-aware attribute of the pixel-wise category weight
map αh,w

m , the interpolation is defined as spatial-aware tri-
linear interpolation.

Y h,w,c =
T−1∑
t=0

ωt ∗ (
i+1∑
ii=i

j+1∑
jj=j

k+1∑
kk=k

driid
g
jjd

b
kkO

h,w,c
(ii,jj,kk))

=
T−1∑
t=0

i+1∑
ii=i

j+1∑
jj=j

k+1∑
kk=k

ωtd
r
iid

g
jjd

b
kk

M−1∑
m=0

αh,w
m Om,c

(ii,jj,kk)

(3)
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Figure 1: Network architecture of self-adaptive two-head weight predictor.

2. Loss Function
We train our network on a pair-wise dataset D =

{(Xs,Ys)|s ∈ IS−10 } with supervised method, where Xs

is an input image and Ys is the corresponding target image.
S is the number of image pairs and s ∈ IS−10 is short for
s = 0, 1, . . . , S − 1. Color Difference Loss Lc and Percep-
tion Loss Lp are introduced in more detail in the following.

Color Difference Loss. To measue the color distance
and encourage the color in the enhanced image to match that
in the corresponding learning target, we use CIE94 in LAB
color space as our color loss. Let (L̂, â, b̂), (L, a, b) denote
predicted and target image in LAB color space, respectively.
ThenLc can be defined as Equation 4. Detailed descriptions
about it can be found in [5].

C1, C2 =

√
â2 + b̂2 + ε,

√
a2 + b2 + ε

SC , SH = 1 + 0.0225 ∗ (C1 + C2), 1 + 0.0075 ∗ (C1 + C2)

∆a, ∆b = â− a, b̂− b
∆C,∆L = C1 − C2, L̂− L

∆H =
√

∆a2 + ∆b2 −∆C2 + ε

Lc =

√
∆L2 +

(
∆C

SC

)2

+

(
∆H

SH

)2

+ ε (4)

Perception Loss. To improve the perceptual quality of the
enhanced image, a widely used LPIPS loss [9] is chosen. It
is defined as weighted norms of L2-distance between fea-
tures of ground truth images and enhanced images on a pre-

trained AlexNet:

Lp =
∑
l

1

H lW l

Hl,W l∑
h=1,w=1

βl ×
∥∥ŷlh,w − ylh,w∥∥22 (5)

where l is the layer chosen to calculate the LPIPS loss, βl
is the weight for the layer l, and ŷl, yl is the corresponding
ground truth features and enhanced features. By default,
we choose outputs from the first five ReLU layers from
AlexNet, and all βl are set to 1.

3. Additional Analysis
In this section, we compare our model with several

SOTA methods on two datasets with different resolution.
Visualizations show that our model outcompetes other
methods on both 480p datasets and on high resolution
dataset.

3.1. Comparison on 480p MIT-Adobe FiveK
Dataset (released by [8])

We directly use the released dataset and nothing is
changed. To be clear, it contains 4500 training pairs and 498
pairs for testing. More visual comparisons can be found in
Figure 2 and Figure 3. Each figure shows results from eight
methods and their corresponding error maps.

3.2. Comparison on Full Resolution MIT-Adobe
FiveK Dataset (Ours)

In this subsection, we train and test the proposed
model on our constructed full-resolution MIT-Adobe FiveK



dataset. More visual comparisons can be found in Figure 4
and Figure 5.

3.3. Comparison on 480p HDR+ Burst Photography
Dataset (released by [8])

We test performance on the open source HDR+ burst
Photography dataset released by [8]. More visual compar-
isons can be found in Figure 6 and Figure 7.

3.4. Comparison on 480p HDR+ Burst Photography
Dataset (Ours)

We also test performance on our constructed 480p HDR+
burst Photography dataset, with post-processing mentioned
in our paper. More visual comparisons can be found in Fig-
ure 8, Figure 9 and Figure 10.

3.5. Comparison on Full Resolution HDR+ Burst
Photography Dataset (Ours)

We then test our algorithm on our constructed full res-
olution HDR+ burst photography dataset. The dataset is
post-processed generally the same as what we mentioned in
section 3.4. The only difference is that all image pairs are
kept as their original size, and no resize is applied. Results
show that our model work well on high resolution images.
More visual comparisons can be found in Figure 11, Fig-
ure 12 and Figure 13.

3.6. Failure Cases

We further show some test cases where our model fails to
produce visually pleasant enhanced images. Results show
that our model sometimes may suffer from artifacts. In this
section, we directly used the full resolution HDR+ burst
photography dataset as mentioned in section 3.5. More vi-
sual comparisons can be found in Figure 14 and Figure 15.
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(a) Input (b) RSGUnet [3] (c) HPEU [2] (d) UPE [7]

(e) HDRNet [1] (f) 3DLUT [8] (g) Ours (h) Ground-truth

Figure 4: Results comparison on ‘a4163’ of full-resolution MIT-Adobe FiveK dataset, and corresponding error maps. For
each pair of results, the upper image is an enhanced image, and the image below is an error map between the enhanced image
and the ground-truth.



(a) Input (b) RSGUnet [3] (c) HPEU [2] (d) UPE [7]

(e) HDRNet [1] (f) 3DLUT [8] (g) Ours (h) Ground-truth

Figure 5: Results comparison on ‘a1544’ of full-resolution MIT-Adobe FiveK dataset, and corresponding error maps.
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(a) RSGUnet [3] (b) DPED [4] (c) HPEU [2] (d) UPE [7]

(e) HDRNet [1] (f) 3DLUT [8] (g) Ours (h) Ground-truth

Figure 11: Results comparison on ‘0382 20150924 100900 333’ of full resolution HDR+ burst photography dataset, and
corresponding error maps. Our result is the closest to ground truth in color and perception. DPED and HPEU show visible
banding artifacts in sky, while RSGUNet, DeepUPE, HDRNet and original 3DLUT suffer from color bias in both sky and
grass. Our spatial-aware 3DLUT has the smallest error to ground truth, and the most pleasant visual perception in local
contrast.



(a) RSGUnet [3] (b) DPED [4] (c) HPEU [2] (d) UPE [7]

(e) HDRNet [1] (f) 3DLUT [8] (g) Ours (h) Ground-truth

Figure 12: Results comparison on ‘0919 20150910 150832 572’ of full resolution HDR+ burst photography dataset, and
corresponding error maps.



(a) RSGUnet [3] (b) DPED [4] (c) HPEU [2] (d) UPE [7]

(e) HDRNet [1] (f) 3DLUT [8] (g) Ours (h) Ground-truth

Figure 13: Results comparison on ‘1125 20151229 192447 145’ of full resolution HDR+ burst photography dataset, and
corresponding error maps.



(a) Input (b) RSGUnet [3] (c) DPED [4]

(d) HPEU [2] (e) UPE [7] (f) HDRNet [1]

(g) 3DLUT [8] (h) Ours (i) Ground-truth

Figure 14: One failure case on ‘5a9e 20141005 162240 437’ of full resolution HDR+ burst photography dataset. Although
our model is the closest to ground truth in most areas, halo artifacts are sometimes visible in our results where color changes
sharply (e.g., around trunks). We believe this is caused by the unsmooth pixel-wise category weights generated by our
two-head weight predictor (i.e., category weights change un-smoothly). Thus, such drawback can potentially be solved by
introducing additional smooth loss as introduced in our paper.



(a) Input (b) RSGUnet [3] (c) DPED [4]

(d) HPEU [2] (e) UPE [7] (f) HDRNet [1]

(g) 3DLUT [8] (h) Ours (i) Ground-truth

Figure 15: One failure case on ‘0006 20160722 101752 239’ of full resolution HDR+ burst photography dataset. Our model
shows the best local contrast in most cases, however, all methods suffer from banding artifacts in extremely dark regions
where Signal-to-Noise Ratio is poor. Since our inputs are of 8-bit, too little useful information is carried in extremely
dark areas and noises dominate signals. Possible solutions including cooperating with other denoising preprocessing, and
replacing low-precision 8-bit inputs with some high-precision 16-bit images.


