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1. The derivation process of effectiveness anal-
ysis on regression task from the gradient.

The Harmonic loss for a positive sample xi is defined as
follows in our paper:

LiHar =(1 + βr)CE(pi, yi) + (1 + βc)L(di, d̂i) (1)

We calculate the partial derivative of Eq.(1) with respect to
the predicted regression offset (di − d̂i) as:
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(2)

Let t = (di − d̂i), we can have
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(3)

where CE(·) is the cross-entropy loss and yi is the one-hot
label, and there is

CE(pi, yi) = −yi log(pi) = − log(pi),

βc = e−CE(pi,yi) = eyi log(pi) = pi
(4)

The definition of βr and βc is presented in Eq.(3) of the main
paper. By substituting Eq.(4) and βr = e−L(di,d̂i) = e−L(t)

into Eq.(3), we can have
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(5)

From the above Eq.(5), we can observe that the gradient
of Harmonic loss with respect to the predicted regression
offset t = (di − d̂i) is also supervised by the classification
score pi. That is, the classification score also participates in
the optimization of the regression branch. We visualize the
absolute value of the gradients of the standard detection loss
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Figure 1. Visualization of the absolute value of the gradients of
detection losses with respect to the predicted regression offset
t = (di− d̂i). (a) is the gradient of our Harmonic loss with respect

to t, | ∂L
i
Har
∂t
|. (b) is the gradient of the standard detection loss

(cross-entropy loss plus smooth L1 loss) with respect to t.

and the proposed Harmonic loss with respect to t = (di−d̂i),
respectively, in Fig. 1.

For the standard detection loss, the gradient with respect
to t does not change with different classification scores as
Fig. 1 (b) shows, which means the optimization of regres-
sion branch is absolutely independent of the classification
task. But for our Harmonic loss, the gradient is a function
simultaneously determined by the two variables pi and t, as
shown in Eq.(5). In other words, for each positive sample,
the classification score pi will supervise the optimization of
the regression branch during training phase of the Harmonic
loss. Specifically, there is a proportional correlation between
pi and the absolute value of the loss gradient w.r.t. t, as
is shown in Fig. 1 (a). This means that the gradient will
suppress the regression offsets of samples with low classi-
fication scores, which, therefore, guarantees the harmony
between classification and regression.

2. Convergence Analysis.
The convergence of the proposed loss is important during

training, in the following, we will give the clear convergence
analysis of our Harmonic loss. The whole Harmonic loss for



a positive sample xi is defined as in our paper:

LiHar =(1 + βr)CE(pi, yi) + (1 + βc)L(di, d̂i) (6)

let us take the classification task as an example. if we let
x = CE(pi, yi), y = L(di, d̂i) and F (x, y) = LiHar, the
proposed Harmonic loss can be rewritten as:

F (x, y) = (1 + e−y)x+ (1 + e−x)y (7)

When we calculate the partial derivative for x, we can get

∂F (x)

∂x
= 1 + e−y − ye−x (8)

Then we can find that the F (x) increases monotonically with
x when the x satisfies:

x > ln y − ln(1 + e−y) (9)

This is basically always true during training. Therefore,
the convergence of our Harmonic loss for the classification
task is the same as the convergence of CE loss, which can
converge well.

Actually, as we described in the Section 3.1 of the main
paper, the partial derivative of Harmonic loss with respect to
the predicted score pi is calculated as:

∂LiHar
∂pi

= L(di, d̂i)−
(1 + e−L(di,d̂i))

pi
(10)

We visualize the gradients of our Harmonic loss with respect
to pi, as shown in Fig. 2. We can find that the gradient value
is always negative whenCE(pi, yi) > ln(L(di, d̂i))−ln(1+
e−L(di,d̂i)) (This equation is the same as Eq.(9), which is
basically always true during training). This means that our
Harmonic loss is always monotonic during training. In other
words, our Harmonic loss for the classification task can con-
verge well during training. Actually, this is why we define
the complete harmonic factors as (1+βr) and (1+βc) instead
of βr and βc. The constant 1 in harmonic factors can en-
sure that the basic localization and classification loss always
exist during training. This can ensure the Harmonic loss is
monotonically decreasing for classification and localization
tasks and avoid the optimization contradiction. The con-
vergence of our Harmonic loss for regression is similar to
classification task, where no longer go into details.

In order to further verify our above derivation process, we
visualize the training loss in our experiments in Fig. 3. We
can clearly find that the Harmonic loss converges perfectly
during the training process.

3. The derivation of Harmonic IoU loss.
The Harmonic IoU loss is defined as follows:

LiHIoU = (1 + IoUi)
γ(1− IoUi) (11)
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Figure 2. Visualization of the gradient of our Harmonic loss with
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Figure 3. Visualization of the training loss in our experiments.
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Figure 4. Visualization of the distribution of HIoU loss.

We calculate the partial derivative of Eq.(11) with respect to
the IoUi, we can have

∂LiHIoU
∂IoUi

= (1 + IoU)γ−1((γ − 1)− (γ + 1)IoU) (12)

In order to ensure the HIoU loss is always monotonic, the
∂Li

HIoU

∂IoUi
must always satisfy ∂Li

HIoU

∂IoUi
≤ 0, so we can have:

IoU ≥ γ − 1

γ + 1
(13)



As we all know, the range of IoU is [0,1]. So in order to
ensure that the Eq. (13)is always true, the focusing parameter
γ in HIoU loss must satisfy γ ≤ 1.

In the Fig. 4, we visualize the distribution of HIoU loss
under five different focusing parameters, we can find the
HIoU losses show the upwards convex shapes, which means
that our HIoU losses increase the weights of examples with
high IoUs in regression task. In the end, the contribution of
each kind of examples is balanced and the bias of regression
can be effectively alleviated.


