A. Dataset Construction

Dataset for self-supervised monocular depth training in
nighttime is under-explored. To make up this lack, we build
two nighttime datasets, named RobotCar-Night (RC-N) and
nuScenes-Night (NS-N). The two datasets consist of many
video clips from Oxford RobotCar [5] and nuScenes [2],
along with carefully generated ground truth using the offi-
cial toolbox]

In RobotCar, the number of LiDAR points in one frame
is relatively small, so multiple frames are combined to gen-
erate the ground truth depth using official scripts. This
process is based on Structure-from-Motion (SFM), there-
fore moving objects lead to wrong outputs. For example,
a generated depth map is visualized in Fig. [I] It shows an
obvious mistake on the moving car framed by a red box.
To tackle this problem, we manually select scenes without
moving object and carefully pick up many high-quality out-
puts among them. This approach is different from the previ-
ous work [7]], in which random sampling is used to choose
test samples.
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Figure 1. Sample from Oxford RobotCar containing moving ob-
jects. The red box indicates a wrong construction of depth.

Remark. In main text, there are several samples containing
moving objects in Fig. 5. These samples are from the same
video sequences as RC-N but neither included in test nor
training split. This is also the case for the last sample in
Fig.[1]

By contrast, the LiDAR data in nuScenes contain more
than 3,000 valid points in one frame and covers a wide range
of depth values. Thus, data from single frame is used to
prepare the ground truth depth maps and random sampling
is applied to form the final test split.

Furthermore, some video clips containing daytime sce-
narios are selected from Oxford RobotCar and nuScenes to
separately build RobotCar-Day (RC-D) and nuScenes-Day
(NS-D), which are used to generate referenced depth maps.

B. Parameter Setting

Here, we discuss the parameter setting about o in MCIE
and € in SBM. Images captured in low light environments
are usually noisy, thus a smaller o should be set to avoid

'Oxford RobotCar: https://github.com/ori-mrg/robotcar-dataset-sdk,
nuScenes: https://github.com/nutonomy/nuscenes-devkit

22 22
0,000 0004 0.008 0012 0016 0 5 10 15 20
o €

Figure 2. The left and right chart separately show the effect of o
and e. The y axis is RMSE error and the x axis denotes different
values of these two parameters.

an excessive enhancement on noise. In darker scenarios,
more textureless pixels need to be masked out. Therefore,
e should be set to a bigger value. In our experiment, (o, €)
is set to (0.008,10) and (0.004,20) on RC-N and NS-N
dataset, respectively. This can be a empirical reference to
set these two parameters.

To explore the effect of these two parameters, we con-
duct series comparison tests on RC-N and report the RMSE
error in Fig. The variables in the left and right chart
are o and e, respectively. Zero indicates the corresponding
module is not enabled. Overall, these two parameters im-
pact little to the framework which performs the best when
o = 0.008, e = 10.

Generally speaking, [0.002,0.01] and [10, 20] are proper
ranges for o and ¢, respectively. Besides, comparison tests
can help to choose the best parameter setting.

C. Selection of Referenced Scene

In our framework, the reference depth maps are gener-
ated by a depth estimation network ®/; trained on RC-D
and NS-D in a self-supervised manner. They provide prior
knowledge about depth distributions and are unpaired with
nighttime scenarios. Generally speaking, depth maps in var-
ious driving scenes can be used as references, since they
share similar depth distributions. To explore the effect of
different reference scenarios, we train the framework in two
referenced scenarios and report quantitative results in Tab.
The method Our (RobotCar-Day) achieves a slightly
worse but similar performance compared to Our (nuScenes-
Day) and significantly outperforms other SOTA methods.
This illustrates that depth maps from other scenarios are
also able to regularize training.

Method Abs Rel Sq Rel RMSE RMSE log 81 ) d3
MonoDepth2 |3] 1.1848 42.3059 | 21.6129 1.5699 0.1842 | 0.3598 | 0.5044
SfMLearner [8 0.6004 8.6346 15.4351 0.7522 0.2145 | 04166 | 0.5961
SC-SfMLearner |1 1.0508 30.5865 19.6004 0.8854 0.1823 | 0.3673 | 0.5422
PackNet [4 1.5675 61.5101 | 258318 1.3717 0.1387 | 0.2980 | 0.4313
FM [6 1.1383 41.6166 | 20.8481 1.1483 0.2376 | 0.4252 | 0.5650
Our (nuScenes-Day) 0.3150 3.7926 9.6408 0.4026 0.5081 | 0.7776 | 0.8959
Our (RobotCar-Day) || 0.3285 | 43069 | 102651 | 04197 | 0.5142 | 07642 | 0.8813

Table 1. Quantitative results on nuScenes-Night, using depth maps
from nuScenes-Day and RobotCar-Day as references, respec-
tively.
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Figure 3. Qualitative comparison between our method and ADFA [[7]] on two samples containing saturated and blurred regions. These two

images come from the Fig. 4 of ADFA.

Input Our

Figure 4. Qualitative results of our method on two samples con-
taining saturated and blurred regions. These two images are from
RobotCar-Night.

D. Comparison with ADFA in Challenging
Cases

ADFA [7] claims three challenging cases that lead to
its failure, including nighttime images with very low-
illumination conditions, blurred image regions and satu-
rated regions (bright light spots). Here, we further compare
our method with ADFA in these three cases.

Blurred and Saturated Image Regions. Fig. [3] shows
a comparison on two image samples containing saturated
and blurred regions. Compared with ADFA, our method
achieves better performance on presenting the shape of ob-
jects. Furthermore, two similar samples are shown in Fig. ]
to further illustrate the advantages of our method.

Images with very Low-Illumination Conditions. Very
low-light images are a huge challenge for self-supervised
depth estimation. Fig. [5shows three samples in very low il-
luminated environments, where the top one and last two are

Figure 5. Qualitative results on very low-light images, where the
top one and last two depth maps are generated by ADFA [7] and
our method, respectively. The first image comes from the Fig. 4
of ADFA [[7] and the last two images are from nuScenes-Night.

generated by ADFA and our method, respectively. On the
first sample, ADFA produces a blurry and inaccurate depth
map. In contrast, our method is still able to make a plau-
sible prediction on the second sample. The last sample is
captured in a very dark environment. Our method makes a
coarse estimation on some objectives but fails to depict the
depth of entire scene.

E. More Qualitative Result

Here, we show more qualitative results on RobotCar-
Night and nuScenes-Night datasets in Fig. [6] and Fig.
respectively. Five SOTA methods are evaluated for compar-
ison, including SfMLearner [8], SC-SfMLearner []], Pack-
Net [4], MonoDepth?2 [3] and FM [6].
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Figure 6. Qualitative comparison on RobotCar-Night.

F. Evaluation Metrics

There are seven standard metrics are used for evaluation,
including Abs Rel, Sq Rel, RMSE, RMSE log, 41, 6 and
03, which are presented by
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where d and dx separately denotes predicted and ground
truth depth maps, D indicates a set of valid ground truth

depth values in one image, |.| returns the number of ele-
ments in the input set.

G. More discussion on experiment results

More Analysis on Experiments. In Table. 1 of main
text, we show the evaluation results on RC-N. One may no-
tice that, MonoDepth2 (Day) and FM (Day) achieve bet-
ter results on the first four error metrics yet worse on the
last three accuracy ones than their counterparts. Here, we
present a possible explanation on this phenomenon. Fig.
[8] shows two depth maps generated by MonoDepth2 (abbr.
MD2) and MonoDepth2 (Day), respectively. The former
produces more detailed results but with big holes while the
later generates blurry outputs without holes. The big holes
indicate a very large depth value and differ greatly from
the Ground Truth, thus MD2 gets higher average errors on
Abs_Rel, Sq_Rel, RMSE and RMSE_log. Conversely, 0123
denote the percentage of pixels below a certain threshold,
therefore MD2 outperforms MD2 (Day) by more accurate
predictions within non-hole areas.
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Figure 8. Qualitative comparison between MonoDepth2 (middle) and MonoDepth2 (Day) (Right).

Mixed Data Training. We train MD2 and FM with Method 2siR T S R RSP RVASHox e D
. . . . MonoDepth2 1.185 42306 | 21.613 1.570 0.184 | 0.360 0.504
mixed daytime and nighttime data from nuScenes and re- EM 1138 | 41617 | 20848 | 1148 | 0238 | 0.425 | 05650
port the results (MonoDepth2 (Mix) and FM (Mix)) in Ta- M"";l;ff;‘/‘l_z ()Mi“ (‘)gzg gig:g TZ;QZ é;g; 8§g§ 8‘5‘; g:j;
1X 3 W09 . . .. .. HoN
ble. 2] These two methods achieve better performance than Our 0315 | 3793 | 9641 | 0403 | 0.508 | 0.778 | 0.89
their baselines but still keep a large gap to Our. Table 2. Quantitative results on mixed daytime and nighttime data

of nuScenes. Baseline methods are underlined.



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan,
Chunhua Shen, Ming-Ming Cheng, and Ian Reid. Unsuper-
vised scale-consistent depth and ego-motion learning from
monocular video. In NIPS, volume 32, 2019.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In /CCV, pages 3828-3838, 2019.

Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos,
and Adrien Gaidon. 3d packing for self-supervised monocular
depth estimation. In CVPR, pages 2485-2494, 2020.

Will Maddern, Geoff Pascoe, Chris Linegar, and Paul New-
man. 1 Year, 1000km: The Oxford RobotCar Dataset. I/RR,
36(1):3-15, 2017.

Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-metric loss for self-supervised learning of depth and
egomotion. In ECCV, pages 572-588. Springer, 2020.
Madhu Vankadari, Sourav Garg, Anima Majumder, Swagat
Kumar, and Ardhendu Behera. Unsupervised monocular
depth estimation for night-time images using adversarial do-
main feature adaptation. In ECCV, pages 443-459. Springer,
2020.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, pages 1851-1858, 2017.



