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A. Implementation Details.

Training details We use the same training hyper-
parameters as [5]. In particular, we are using softplus for
GAN loss, and R1 regularization [7] on both the sketch
and image discriminator, DY and DX . We do not use path
length regularization, as it has no effect on the latent map-
ping network. Also, we set the batch size to 4 for all of our
experiments, except when the sketch inputs are less than
four, where we set the batch size to 1.
Hyperparameters. We use the same hyperparameters for
our full method in all of our experiments. In particular, we
use λimage = 0.7

In the main text (Sec 4.1), we compared several variants
of our method in our ablation studies. To make the com-
parison fair, for each variant, we tuned the loss weights
for optimal performance. In Table 2, we list the hyperpa-
rameters used for each variant. The only exception is that
we use λweight = 50 for the Lsketch + Lweight and Lsketch +
Lweight + aug. variant model trained on the standing cat
task. Also, if the variants are not listed in the table, the same
loss weights as the full method are used. The search space
of the λimage is [0.3, 0.5, 0.7, 1.0], and the search space of
λweight is [0.1, 1, 10, 50, 100, 1000].
Data collection. In the main text (Sec. 4.1), we selected
sets of 30 sketches with similar shapes and poses to des-
ignate as the user input: examples of sketches from these
sets are shown in Figure 1. To evaluate generation qual-
ity, we collected images that match the input sketches from
LSUN [10]. To retrieve matching images, we experimented
with two sketch-image cross-domain matching methods. We
applied both the SBIR method of Bui et al. [2] and chamfer
distance [1]. Both of these retrieval results are shown in Fig-
ure 2. We observe that with chamfer distance, the retrieved
images match poses of the sketches more faithfully. As a
result, we adopt this method to generate our evaluation sets.
However, we notice that there still exists outliers after the
retrieval; hence, we hand-selected 2,500 images out of top
10,000 matches to curate the evaluation sets. A comparison
between curated dataset and top chamfer matches are shown
in Figure 3.
Evaluation procedure. To evaluate each model, we sample
2,500 images without truncation and save them into png files.

Likewise, the evaluation set described in the main text (Sec.
4.1) consists of 2,500 256×256 images stored in png. We
evaluate the Fréchet Inception Distance values using the
CleanFID code [8].

B. Additional results
Other evaluation metrics. We report Perceptual Path
Length (PPL) [4] in Table 1. We find that our method im-
proves the original models’ PPL, and beats the baselines. We
note that our model focuses on fewer modes than the original
one, so interpolations are smoother on average, leading to
smaller PPL.

In addition, Precision, and Recall metrics [6] are reported
in Table 1. The precision measures the proportion of gener-
ated samples that are close to the real dataset in VGG feature
space [9], and the recall measures the proportion of real
dataset that are close to generated samples in VGG feature
space. We note that models with better results often have
higher precision and lower recall. We expect our method to
increase precision as it refines the generated distribution to
better match the target distribution. But since our task aims
at finding a subset of the source distribution, our method the-
oretically cannot increase the recall: increasing recall would
require synthesizing new modes of real data without access
to any new real examples. In our setting, the ideal maximizes
precision while maintaining recall unchanged from the pre-
trained model. A drop in recall reveals some loss in diversity,
and measures headroom for improving upon our method.

Additional qualitative results. In Figure 4, we show ad-
ditional results on latent space editing with our customized
models. In Figure 5, we show interpolation between cus-
tomized model by interpolating the W-latents or the model
weights. Also, we show uncurated samples for our models
in Figure 6 (horse rider), Figure 7 (horse on a side), Figure 8
(standing cat) and Figure 9 (gabled church).
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Family Name

Training settings Test cases

No.
Samples Aug.

Horse rider Horse on a side Standing cat Gabled church

PPL Prec. Rec. PPL Prec. Rec. PPL Prec. Rec. PPL Prec. Rec.
↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑

Pre-trained Original N/A 338.87 0.22 0.63 338.87 0.33 0.57 438.11 0.21 0.54 342.73 0.46 0.49

Baseline Bui et al. [2] 30 356.56 0.24 0.53 343.48 0.26 0.60 433.05 0.22 0.58 346.48 0.49 0.48
Chamfer 30 353.07 0.30 0.56 371.11 0.35 0.57 418.91 0.26 0.55 340.12 0.50 0.52

Ours Full (w/o aug.) 30 353.71 0.42 0.52 266.69 0.42 0.49 150.89 0.65 0.20 344.24 0.48 0.48
Full (w/ aug.) 30 X 306.81 0.50 0.50 232.95 0.44 0.39 263.99 0.50 0.41 336.67 0.46 0.51

Table 1. Other metrics. We report the Perceptual Path Length (PPL), Precision (Prec.), and Recall (Rec.) of the original models, baselines
and our methods on four different test cases. The details of the baselines are in the main text (Sec. 4.1). X indicates translation augmentation
is applied. ↑, ↓ indicate if higher or lower is better. Evaluations on the original models are in gray, and the best value is highlighted in black.

(a) horse riders (b) horse on a side

(c) standing cat (d) gabled church

Figure 1. Example of sketches used for training. For each task (a, b, c, d), 30 sketches with similar shapes and layouts are hand-selected
as training samples, where above shows subsets of 5 sketches.

sketch top 5 retrieval (Chamfer) top 5 retrieval (SBIR)

Figure 2. Comparison between retrieval methods. We compare
retrieval methods between chamfer distance [1] and SBIR method
of Bui et al. [2]. We find that the retrievals using chamfer dis-
tance matches the input sketches better than those using Bui et al.
Left shows the example query out of the 30 sketches used for the
retrieval.

sketch top 2500 Chamfer matches 2500 curated samples

Figure 3. Curated evaluation set. We show random samples from
the top 2,500 matches using chamfer distance [1] (left) and 2,500
hand-selected images (right). The quality of the evaluation set is
improved after curation.

λimage λweight

Lsketch 0 0
Lsketch+aug. 0 0
Lsketch+Lweight 0 100
Lsketch+Lweight+aug. 0 100

Table 2. Loss weights for each variant. For a fair comparison, we
use different loss weights for several variants. We find that using the
above weights gives optimal performance. The variants not listed
in this table is using the same hyperparameters as the Full method.



change color remove rider

add cloud more vibrant
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Figure 4. Additional latent edit results. Similar to Figure 9 in the main text, we show additional results of applying GANSpace [3] edits to
our customized models, horse rider (top) and gabled church (bottom).

Model 1 Model 2

Interpolation in W-space

Model 1 Model 2

Interpolation in model weights
Figure 5. Interpolating between customized models. We can interpolate between the customized model by interpolating (top) the W-latents
or (bottom) the model weights. Model 1 and 2 are from Figure 6 and Figure 5 in the main text, respectively.



Figure 6. Uncurated samples of the horse rider model. Truncation ψ = 0.5 is applied to generate the images.

Figure 7. Uncurated samples of the horse on a side model. Truncation ψ = 0.5 is applied to generate the images.



Figure 8. Uncurated samples of the standing cat model. Truncation ψ = 0.5 is applied to generate the images.

Figure 9. Uncurated samples of the gabled church model. Truncation ψ = 0.5 is applied to generate the images.
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