
Supplementary Materials of “Sub-bit Neural Networks: Learning to
Compress and Accelerate Binary Neural Networks”

Yikai Wang1∗ Yi Yang2 Fuchun Sun1 Anbang Yao2

1Beijing National Research Center for Information Science and Technology (BNRist),
State Key Lab on Intelligent Technology and Systems,

Department of Computer Science and Technology, Tsinghua University 2Intel Corporation
{wangyk17@mails., fcsun@}tsinghua.edu.cn, {yi.b.yang, anbang.yao}@intel.com

A. Training Details

For image classification experiments on both CIFAR10
and ImageNet datasets, networks are trained from scratch.
We set the batch size to 256, and use an SGD optimizer
with a momentum of 0.9. The weight decay rate is assigned
to 10−4. We initialize the learning rate to 0.1 and adopt a
cosine learning rate scheduler. Following IR-Net [9], we
balance and standardize weights in the forward propagation
and adopt the error decay estimator to approximate the sign
function in the backward propagation. We select Hardtanh
as the activation function instead of ReLU when we bina-
rize activations [9]. To networks considered in the experi-
ments, we use standard data augmentation strategies follow-
ing the original papers [8, 10, 13]. On CIFAR10, we train
each model on a single V100 GPU with 1000 epochs. On
ImageNet, we train each model on four V100 GPUs with
120 epochs for ResNet-18 and ResNet-34.

For object detection, on both PASCAL VOC and MS-
COCO datasets, networks are pre-trained on ImageNet [2]
classification dataset. Following BiDet [12], the batch size
is set to 32, and we adopt the Adam optimizer [5]. The
learning rate is initialized to 0.001 which decays twice by
multiplying 0.1 at the 6-th and 10-th epoch out of 12 epochs
[5]. We adopt four V100 GPUs for training.

B. More Visualizations

To figure out how the subsets refinement module affects
the binary kernels during training, we provide more visual-
ization results in Figure 11. We observe that for different
bit-width settings, binary kernels tend to be grouped and
symmetric, especially in 0.56-bit and 0.44-bit subfigures.
Besides, after training, binary kernels in SNNs present sim-
ilar distributions in the same layers to some extent.

∗This research was done when Yikai Wang was an intern at Intel Labs
China, supervised by Anbang Yao who is responsible for correspondence.

C. Extending to Bottleneck with 1×1 Kernels

In our main paper, we focus on 3×3 kernels to design
our SNNs, as 3×3 convolutional layers usually occupy ma-
jor parameters and computational costs in many backbones
such as VGG-small, ResNet-18, ResNet-34, etc. Yet in
larger backbones like ResNet-50, the Bottleneck structure
also contains 1×1 convolutional layers of which both the
parameters and computations cannot be ignored. Therefore
in this part, we introduce how our method can be naturally
extended to such architectures.

For a 1× 1 convolutional layer, assuming its layer index
is i, the weights can be denoted as wi ∈ Rciout·c

i
in×1×1. As

in modern backbones ciin is usually divisible by 8, we split
wi into ciout ·

ciin
8 vectors with each vector denoted as wi

c ∈
R8×1×1, where c = 1, 2, · · · , ciout ·

ciin
8 . In this case, bina-

rizing wi
c is formulated as w̄i

c = arg mink∈K′ ‖k −wi
c‖22,

where K′ = {±1}8×1×1 and |K′ | = 256. Again, we sam-
ple layer-specific subsets P′i⊂K′ . Under the circumstance,
if we use τ ′-bit to represent a vector wi

c, there is |P′i| = 2τ
′
.

By using indices 1, 2, 3, · · · , 2τ ′ to represent each binarized
vector w̄i

c, we can obtain a compression ratio τ ′

8 .
To facilitate the understanding, Table 5 illustrates the

comparison of the binarization for 3× 3 kernels (proposed
in our main paper) and for 1×1 kernels.

In Figure 6 of our main paper, we introduce a method
that accelerates the 3 × 3 convolution operations of SNNs.
1× 1 convolutional layers of SNNs can also be accelerated
by the similar computation sharing.

Table 6 provides experimental results based on ResNet-
50, and we again provide the full results for comparison. We
adopt three bit-width settings including 0.59-bit, 0.47-bit,
and 0.35-bit, which correspond to setting both τ and τ ′ to
5, 4, 3 respectively. We observe that the 0.47/32-bit setting
with ResNet-50 only drops 0.6% in top-1 accuracy com-
pared with the 1/32-bit counterpart, yet it achieves 2.13×
parameter reduction and 5.27× Bit-OPs reduction.



0.67-bit SNN (64 binary kernels in each subset)

Pe
rc

en
ta

ge
 (%

)

Epoch 1  (random subsets) Epoch 500 Epoch 1000

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

 0.

 6.

 0.

 6.

 0.

 6.

 0.

 6.

Pe
rc

en
ta

ge
 (%

)

Epoch 1  (random subsets) Epoch 500 Epoch 1000

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

0.56-bit SNN (32 binary kernels in each subset)

 0.

 6.

 0.

 6.

 0.

 6.

 0.

 6.

Epoch 1 Epoch 500 Epoch 1000

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

Pe
rc

en
ta

ge
 (%

)

 0.

 3.

 0.

 3.

 0.

 3.

 0.

 3.

1-bit BNN 

Pe
rc

en
ta

ge
 (%

)

Epoch 1  (random subsets) Epoch 500 Epoch 1000

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

Layer 3

Layer 9

Layer 15

Layer 18

0.44-bit SNN (16 binary kernels in each subset)

 0.

 6.

 0.

 6.

 0.

 6.

 0.

 6.

Figure 11. Visualization of how indices and frequencies of binary
kernels change during training with subsets refinement. We pro-
vide results for 0.67-bit, 0.56-bit, and 0.44-bit SNNs, as well as
a 1-bit BNN for comparison. Experiments are performed on CI-
FAR10 with ResNet-20.

Table 5. Comparison of binarization methods including BNN and
SNN for 3 × 3 and 1 × 1 convolutional layers, including weights
representation, element of a set/subset, set/subset representation,
bit numbers of wi

c and per weight.

3× 3 kernel size 1× 1 kernel size

Weights wi ∈ Rc
i
out·c

i
in×3×3 wi ∈ Rc

i
out·c

i
in×1×1

Element of a set/subset wi
c ∈ R1×3×3 (Kernel) wi

c ∈ R8×1×1 (Vector)

Number of units ciout · ciin ciout ·
ciin
8

BNN
Full set K = {±1}1×3×3 K′ = {±1}8×1×1

Bits of wi
c 9-bit 8-bit

Bits per weight 1-bit 1-bit

SNN
Subset Pi⊂K, |Pi| = 2τ P′i⊂K′ , |P′i| = 2τ

′

Bits of wi
c τ -bit, 1 ≤ τ < 9 τ ′-bit, 1 ≤ τ < 8

Bits per weight τ
9

-bit τ ′

8
-bit

Table 6. Results on the CIFAR10 dataset to verify our method on
ResNet-50 which contains 1×1 convolutional layers. Single-crop
testing with 32 × 32 crop size is adopted, and each result of our
method is the average of three runs. Numbers highlighted in green
are reduction ratios over BNN counterparts. ∗ indicates our imple-
mented results.

Method Bit-width #Params Bit-OPs Top-1 Acc.
(W/A) (Mbit) (G) (%)

ResNet-50 (Extending to Bottleneck with 1×1 convolutional kernels)
Full precision 32/32 750.26 78.12 95.4
IR-Net∗ [9] 1/1 23.45 1.221 93.2

Vanilla-SNN | SNN 0.59/1 13.87 (1.7×) 0.333 (3.7×) 92.1 | 92.9
Vanilla-SNN | SNN 0.47/1 11.09 (2.1×) 0.239 (5.1×) 91.4 | 92.4
Vanilla-SNN | SNN 0.35/1 8.321 (2.8×) 0.191 (6.4×) 91.0 | 92.1

IR-Net∗ [9] 1/32 23.45 39.06 95.1
Vanilla-SNN | SNN 0.59/32 13.87 (1.7×) 10.67 (3.7×) 94.4 | 95.1
Vanilla-SNN | SNN 0.47/32 11.09 (2.1×) 7.640 (5.1×) 93.8 | 94.5
Vanilla-SNN | SNN 0.35/32 8.321 (2.8×) 6.127 (6.4×) 93.5 | 94.0

D. Evaluation on Object Detection

To prove the generalization of our SNNs on object detec-
tion, we further perform experiments on PASCAL VOC [3]
and MS-COCO 2014 [6] datasets. PASCAL VOC contains
images within 20 different categories. The same with [12],
we train our SNNs using VOC 2007 and VOC 2012 trainval-
sets (16k images) and evaluate on VOC 2007 test-set (5k
images). MS-COCO 2014 dataset contains images within
80 different categories. We follow the popular “trainval35k”
and “minival” data split method [1, 12], which sets up train-
ing with the combination of the training set (80k images)
as well as sampled images from the validation set (35k im-
ages), and adopts the remaining 5k images in the validation
set for testing.

We choose two typical pipelines including SSD300 [7]
and Faster R-CNN [11], using VGG16 and ResNet-18 as
backbones respectively. Following the standard evaluation
metrics [6], we report the average precision (AP) for IoU∈
[0.5:0.05:0.95], denoted as mAP, and AP50, AP75 as well.

For a fair comparison, we follow the same training set-
tings with BiDet [12], which achieves state-of-the-art bina-
rization performance for the object detection task. Evalu-



Table 7. Object detection results on the PASCAL VOC and MS-
COCO 2014 datasets. Single-crop testing with crop size 300×300
for SSD300, and 600 × 1000 for Faster R-CNN. We follow the
training details and techniques in BiDet [12], which could be the
reference for our 1-bit baselines.

Method Bit-width VOC MS-COCO 2014
(W/A) mAP (%) mAP (%) AP50 (%) AP75 (%)

VGG16, SSD
Full precision 32/32 72.4 23.2 41.2 23.4

BNN [4] 1/1 42.0 6.2 15.9 3.8
XNOR [10] 1/1 50.2 8.1 19.5 5.6
Bi-Real [8] 1/1 63.8 11.2 26.0 8.3
BiDet [12] 1/1 66.0 13.2 28.3 10.5

Vanilla-SNN | SNN 0.67/1 64.0 | 65.1 12.1 | 12.8 27.4 | 27.9 9.4 | 10.1
Vanilla-SNN | SNN 0.56/1 63.3 | 64.2 11.2 | 11.9 26.3 | 27.1 8.9 | 9.5
Vanilla-SNN | SNN 0.44/1 61.8 | 62.9 10.1 | 11.0 24.9 | 25.6 8.0 | 8.7

ResNet-18, Faster R-CNN
Full precision 32/32 74.5 26.0 44.8 27.2

BNN [4] 1/1 35.6 5.6 14.3 2.6
XNOR [10] 1/1 48.4 10.4 21.6 8.8
Bi-Real [8] 1/1 58.2 14.4 29.0 13.4
BiDet [12] 1/1 59.5 15.7 31.0 14.4

Vanilla-SNN | SNN 0.67/1 57.6 | 58.8 14.3 | 15.1 29.6 | 30.5 13.3 | 13.8
Vanilla-SNN | SNN 0.56/1 56.9 | 57.9 13.5 | 14.3 29.0 | 29.9 12.4 | 13.2
Vanilla-SNN | SNN 0.44/1 55.2 | 56.4 12.4 | 13.3 27.7 | 28.7 11.8 | 12.5

ation results on both datasets are reported in Table 7, and
we also consider 0.67-bit, 0.56-bit, and 0.44-bit settings for
our SNNs. Regarding Faster-RCNN on the PASCAL VOC
dataset, reducing the bit-width to 0.56, mAP has a slight
drop of 1.6%; using 0.67-bit on the COCO dataset achieves
very close performance compared with 1-bit BiDet, with
only 0.6% mAP drop. These evaluation results again prove
the effectiveness of our proposed method.

E. Other Possible Baselines
Besides the methods discussed and compared in the ex-

periments of the main paper, we also consider another two
possible methods as baselines. 1) Baseline A: Since each bi-
nary kernel is assigned an index from 1 to 512, a straightfor-
ward solution is to simply select binary kernels uniformly
with the same index interval. 2) Baseline B: At every iter-
ation or every 10 iterations, we select the top 2τ most fre-
quent binary kernels from the corresponding 1-bit BNNs
as the subset for each layer. Results of both baselines and
our method are provided in Table 8. Here, experiments are
conducted on ImageNet with ResNet-18. We find that Base-
line A achieves much lower performance than our proposed
method, even Vanilla-SNN. We speculate that uniformly se-
lecting binary kernels impacts the network representation
ability as subsets in different layers are the same. In con-
trast, Baseline B seems to be a stronger baseline and it also
surpasses Vanilla-SNN. However, the counting and sorting
processes slow down the training. The training speed issue
of Baseline B could be alleviated by updating subsets every
10 training iterations instead of 1, but accordingly the ac-
curacy slightly drops. These results verify that our SNN is
superior in both performance and training efficiency.

Table 8. Results on the ImageNet dataset with ResNet-18 to verify
two possible baseline methods described in Sec. E. “1 iteration”
and “10 iterations” indicate updating binary kernels every iteration
and every 10 iterations, respectively.

Method Bit-width Top-1 Acc.
(W/A) (%)

Baseline A 0.56/32 60.5
Baseline B 0.56/32 62.7

Baseline B-10 0.56/32 62.5
Vanilla-SNN | SNN 0.56/32 62.8 | 63.4

Figure 12. Reduction ratios w.r.t. parameters and bit-wise opera-
tions compared with 1-bit BNNs. Subfigures in the left column
provide the comparison when excluding the first and last layers.
Subfigures in the right column provide the comparison when in-
cluding the first and last layers with full-precision weights. Exper-
iments are conducted on CIFAR10 with ResNet-18, ResNet-50,
and VGG-small. Activations are not binarized in the models.

F. Compression and Acceleration Including
the First and Last layers

Regarding the common paradigm [8, 9, 10] of network
binarization, weights in the first layer and last layer are full-
precision weights, and in other layers are binarized. Our
comparisons for parameters and bit-wise operations so far
have excluded the first and last layers. To further verify the
efficiency of our method when considering the whole net-
work, Figure 12 provides the comparison when excluding
and including the first and last layers. We observe that our



0.56-bit SNN (ResNet-18)

1-bit BNN (ResNet-18)

1.159ms

3.626ms

Figure 13. Timeline comparison between a 0.56-bit SNN and a 1-
bit BNN, based on ResNet-18. This visualization is a supplement
to Table 4 of our main paper. The running time is evaluated with
the 224×224 image input, and a hardware configuration of Intelr
CoFluentTM 64PEs@1GHz. Zoom in for the best view.

method can as well achieve good compression and acceler-
ation performance even taking the first and last layers (with
full-precision weights) into consideration. Note that VGG-
small does not have a global average pooling layer, and thus
its fully connected layer occupies more parameters and op-
erations than the other two backbones.

G. Other Details of Practical Deployment
In Sec. 5.3 of our main paper, we conduct practical de-

ployment and compare the total running time of 0.56-bit
SNNs and 1-bit BNNs. Here, we provide Figure 13 which
depicts the evaluation timelines of both models based on
ResNet-18. Different timeline densities indicate different
stages of ResNet-18. We observe that our SNN can achieve
high acceleration ratios in the last three stages where the
channel numbers are large, which is consistent with our
analysis in Sec. 4.5 of the main paper.

References
[1] Sean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross B.

Girshick. Inside-outside net: Detecting objects in context

with skip pooling and recurrent neural networks. In CVPR,
2016. 2

[2] Jia Deng, Wei Dong, Richard Socher, Li Jia Li, Kai Li,
and Fei Fei Li. Imagenet: a large-scale hierarchical image
database. In CVPR, 2009. 1

[3] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pascal
visual object classes (VOC) challenge. IJCV, 2010. 2

[4] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. In
NeurIPS, 2016. 3

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[6] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, 2014. 2

[7] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: single shot multibox detector. In ECCV, 2016. 2

[8] Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Binarizing deep net-
work towards real-network performance. In IJCV, 2020. 1,
3

[9] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In CVPR, 2020. 1, 2, 3

[10] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In ECCV, 2016. 1, 3

[11] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NeurIPS, 2015. 2

[12] Ziwei Wang, Ziyi Wu, Jiwen Lu, and Jie Zhou. Bidet: An
efficient binarized object detector. In CVPR, 2020. 1, 2, 3

[13] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In ECCV, 2018. 1


