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Network Optimizer Lr (β1, β1) Bs Is

Two-class I2I G Adam 1e−5 (0.0,0.99) 16 256
A,D Adam 1e−3 (0.0,0.99) 16 256

Multi-class I2I G Adam 5e−5 (0.0,0.999) 16 128
A,D Adam 2e−4 (0.0,0.999) 16 128

Table 1. The experiment configuration. Lr: learning rate, Bs: batch
size, Is: image size.

A. Multi-class I2I translation
Here we introduce how to perform unpaired multi-class

I2I translation. We consider two domains: source domain
X1 ⊂ RH×W×3 and target domain X2 ⊂ RH×W×3 (it
can trivially be extended to multiple classes). In this work,
given limited training samples from both source and target
domains, we aim to map a source image x1 ∈ X1 into a
target sample x1→2 ∈ X2 conditioned on the target domain
label c ∈ {1, . . . , C} and a random noise vector z ∈ RZ.
Let image x ∈ X1

⋃
X2 is sampled from dataset.

As illustrated Figure 1, our framework is composed of
three stages: source-target initialization (Figure 1(a)) aim-
ing to obtain a satisfactory domain-specific GAN, which
can then be used for I2I translation; self-initialization of
adaptor layer (Figure 1(b)) which reduces the risk of over-
fitting of the adaptor layers when trained on limited data;
and transfer learning for I2I translation (Figure 1(c)) which
finetunes all networks, each of which is initialized accord-
ing to the previous steps, on the few available source and
target images.
Source-target initialization. we expect to study a excellent
generative model utilizing the limited training data. Differ-
ent to the model for two-class I2I translation, in this stage
we train one generator and one discriminator on all im-
ages instead of class-specific generator and class-specific
discriminator. The training objective is as following:

LGAN = Ex∼X1
⋃

X2
[logD (x, c)]

+ Ez∼p(z),c∼p(c) [log (1−D (G (z, c) , c))] ,
(1)

where p (z) follows the normal distribution, and p (c) is

the domain label distribution. Here the generative model is
used to provide a better initialization for the I2I translation.
Self-initialization of adaptor layer. We expect to over-
come the overfitting of the adaptor layers, as well as align-
ing the distribution of both the pretrained generator and the
pretrained discriminator. As introduced in Section 3.1, we
propose the self-initialization procedure, which leverages
the previous pretrained model (Figure 1 (a)) to achieve this
goal. Especially, both the noise z and the class embedding
c are taken as input for the generator G, from which we ex-
tract the hierarchical representation Fg(z, c) = {G(z, c)l}
as well as the synthesized image G(z, c). Here G(z, c)l
is the lth(l = m, . . . , n, (n > m)) ResBlock 1 output
of the generator G. We then take the generated image
G(z, c) as input for the discriminator D, and similarly col-
lect the hierarchical feature Fd(z) = {D(G(z, c))l}. The
adaptor network A finally takes the output representation
{D(G(z, c))l} as input, that is A(Fd(z)) = {A}. In this
step, our loss is:

Lali =
∑
l

∥Fg (z)−A (D(G(z, c)))∥1 . (2)

Transfer Learning for I2I translation. Figure 1(c) shows
how to map the image from the source domain to target do-
main. In this stage, we propose an auxiliary generator G̃′

which aims to improve the usage of the deep layers of the
generator, largely due to the skip connections. It is rela-
tively easy for the generator to use the information from the
high-resolution skip connections (connecting to the upper
layers of the generator), and ignore the deep layers of the
generator, which require a more semantic understanding of
the data, thus more difficult to train.

Our loss function for I2I translation is a multi-task ob-
jective comprising: (a) conditional adversarial loss which
not only classifies the real image and the generated image,

1After each ResBlock the feature resolution is half of the previous one
in both encoder and discriminator, and two times in generator
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Figure 1. Conditional model architecture and training stages. Here modules come from the immediate previous stage unless otherwise
indicated. A pretrained GAN (e.g., BigGAN [2]) is used as G0 and D0 to initialize the GAN. (a) Source-target initialization performs
finetuning on all data to form a trained GAN model (i.e., the generator G and the discriminator D). (b) Self-initialization of adaptor layer
to pretrain the adaptor A and align both the generator G and the discriminator D. We only update the adaptor layers A. (c) The I2I
translation model is composed of five main parts: the encoder E, the adaptor layer A, the generator G̃, the auxiliary generator G̃′ and the
discriminator D. Note the encoder E is initialized by the discriminator D. The portion of weights from G′ that is not shared (in yellow),
is initialized with G weights.

but encourages the networks {E,A, G̃} to generate class-
specific images which correspondent to label c. (b) recon-
struction loss guarantees that both the input image x1 and
the synthesized image x1→2 = G̃(z, c, A(E(x1))) keep the
similar structural information.

Conditional adversarial loss. We employ GAN [4] to opti-
mize this problem as follows:

LGAN = Ex2∼X2,c∼p(c) [logD (x2, c)]

+ Ex1∼X1,z∼p(z),c∼p(c)

[
log(1−D

(
G̃ (A (E (x1)) , z, c)

)]
+ λauxEz∼p(z),c∼p(c)

[
log

(
1−D

(
G̃′ (z, c)

))]
,

(3)
The hyper-parameter λaux balances the importance of each
terms. We set λaux = 0.01.

Reconstruction loss. We use reconstruction to preserve the
structure of both the input image x1 and the output image
x1→2. In the same fashion as results for photo-realistic im-
age generation [5, 6, 9], we use the discriminator output to
achieve this goal through the following loss:

Lrec =
∑
l

αl ∥D (x1)−D (x1→2)∥1 , (4)

where parameters αl are scalars which balance the terms.
Note we set αl = 1.

Full Objective. The full objective function of our model is:

min
E,A,G̃,G̃

′
max
D

LGAN + λrecLrec (5)

where λrec is a hyper-parameter that balances the impor-
tance of each terms. We set λrec = 1.

The configure of the experiment is reported in Table 1

B. Adaptor
We use the adaptor A to connect the encoder E and the

generator G, aiming to leverage both the structure and se-
mantic information. We sum the output of the adaptor with
the corresponding one of the generator, which is as follow-
ing:

Ĝl = Gl (x1, z, c) + wlAl (El (x1)) (6)

where Gl is the output of the corresponding layer which has
same resolution to Al. The hyper-parameters wl are used to
balance the two terms (in this work we set wl is 1 except for
the feature (32*32 size) which is 0.1 ). Note for two-class
I2I translation, we perform similar procedure.

C. Ablation study
We further qualitatively compare the generated images

after source and target initialization on two-class I2I trans-
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Figure 2. Examples generated by both source and target initialization and self-initialization of the adaptor on cat2dog dataset. The first
two columns are the output of the StyleGAN and the generator after the source and target initialization respectively. The remaining
columns (G(Ai)(i = 0, 1, 2, 3)) are the corresponding output of the generator G which only takes the corresponding output of the adaptor
Ai(i = 0, 1, 2, 3).

lation. The second column of Figure 2 shows the syn-
thesized images after source and target initialization. We
can see that the produced images are highly realistic and
category-specific, indicating the effectiveness of this step.
Next, we want to verify whether the self-initialization of the
adaptor successfully aligns encoder and generator. There-
fore, we take the noise as input for the generator, and obtain
an image, which is further fed into the discriminator and
then through the adaptor layer. The adaptor layer output is
then used as the only input of the generator (now no noise
input z is given). The results are provided in the third to last
columns of Figure 2. The generator still produces high fi-
delity images when only inputting the output features from
the adaptor. These results demonstrate that the distribution
of the adaptor is aligned to the generator before performing
the transfer learning for I2I translation (Figure 1(c)).

Method
Dataset (apple,orange):(100,100) (face,moji):(100,100)

apple → orange orange → apply face → moji
FID↓ 100 × KID ↓ FID↓ 100 × KID ↓ FID↓ 100 × KID ↓

NICEGAN [3] 193.2 9.98 233.1 15.2 139.4 10.7
CUT[8] 217.3 14.0 258.1 16.3 324.3 35.3

TransferI2I (ours) 173.5 8.54 179.6 7.89 78.6 4.02
Table 2. The metric results on apple2orange and face2moji
datasets.

D. Two-class I2I translation

We also use two no-face datasets: apple2orange[60] and
face2moji[34]. Each of them contains 100 images for train-
ing and 100 images for test. As depicted in Tab. 2, we
outperform the other methods, on both metrics for both
datasets.

E. Results

Figure 3 reports interpolation by freezing the input im-
ages while interpolating the class embedding between two
classes. Our model still manages to generate high quality
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Figure 3. Interpolation by keeping the input image fixed while interpolating between two class embeddings. The first column is the input
images, while the remaining columns are the interpolated results. The interpolation results from pug to mongoose.

images even for never seen class embeddings. On the con-
trary, StarGANv2 with limited data shows unsatisfactory
performance.

Our method obtains compelling performance for many
cases, but suffers from some failures. Figure 4 shows a
few failure cases. The input images are different from the
normal animal faces. E.g. a side-view of a face, which is
rare in the dataset, causes the model to produce unrealistic
results.

We evaluate the proposed method on both cat2lion and
lion2cat datasets, which has 100 images for each category.
The qualitative results are shown in Figure 5.

We also show results translating an input image into all
category on the Animal faces, Foods, and Birds in Figure 6,
and 8.

F. T-SNE

We explore the latent space of the generated images.
Given the target class c (e.g., Rhodesian ridgeback)), we
take different noises z and the constant c as input for the
networks {E,A,G}, and generate 1280 images. Thus we
use Principle Component Analysis (PCA) [1] to extracted
feature, following the T-SNE [7] to visualize the gener-
ated images in a two dimensional space. As shown in Fig-
ure 9, given the target class (Rhodesian ridgeback), Trans-
ferI2I correctly disentangles the pose information of the in-
put classes. The T-SNE plot shows that input animals hav-
ing similar pose are localized close to each other in the T-
SNE plot. Furthermore, it shows TransferI2I has the ability
of diversity. We also conduct T-SNE for 14,900 generated
images across 149 categories (Figure 10).

Input Output

Figure 4. Typical failure case of our method.
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Figure 5. Qualitative results on both cat2lion and lion2cat dataset.
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Figure 6. Qualitative results on the Animal faces dataset. We translate the input image (bottom right) into all 149 categories. Please zoom-in
for details.
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Figure 7. Qualitative results on the Foods dataset. We translate the input image (bottom right) into all 256 categories. Please zoom-in for
details.
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Figure 8. Qualitative results on the Birds dataset. We translate the input image (bottom right) into all 555 categories. Please zoom-in for
details.
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Figure 9. 2-D representation of the T-SNE for 1280 generated images, the target class is Rhodesian ridgeback. Note that for each pair
image, the left is the input and the right is the output image. Please zoom-in for details.
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Figure 10. 2-D representation of the T-SNE for 14900 generated images across 149 classes. Please zoom-in for details.
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