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Supplementary
1. Inconsistent Ground-Truth Targets

As shown in Figure 1, we list three types of inconsis-
tencies between the semantic contents and the ground truth
targets. These inconsistencies act as a kind of “noises” in
the training targets, which might be harmful to the model
learning.

2. Mathematical Analysis
Given an unseen testing image I without any prior, we

calculate the expected counting error E for I. Considering
all possible K patches from the training set, there should be
a collection T of local counts dk, k ∈ {1, 2, ...,K}. We
use T̃ to represent the collection after removing duplicate
counts from T . Assuming the data is independent and iden-
tically distributed (i.i.d.), then the local count map Ds of I
can be viewed as another collection of local counts, which
are randomly selected from T̃ . Thus the error E for image
I could be approximated as E ≈ |

∑
di∈T̃ pi(di − d̂i)|, in

which pi is the sampling probability for local count di, and
d̂i is the estimation for di. Typically, K is large enough so
that pi could be replaced with the frequency of occurrence
Ndi

/K, and Ndi
is the number of occurrence for di in T .

Finally, the overall expected counting error for image I is
represented as follows:

E ≈

∣∣∣∣∣∣
∑
di∈T̃

Ndi
(di − d̂i)

∣∣∣∣∣∣ /K =

∣∣∣∣∣
K∑

k=1

(dk − d̂k)

∣∣∣∣∣ /K. (1)

Since the expected counting error E ∝ Ẽ = |
∑K

k=1(dk−
d̂k)|, our goal is to minimize Ẽ with a suitable count inter-
val partition and count proxy selection strategy. Assuming
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Figure 1: Illustrations for three types of outliers introduced
by the inconsistency between semantic content in patch and
local count in ground-truth, and the comparison for robust-
ness of MSE and CE. (a) Same local count but inconsistent
semantic due to large scale variance, and the local counts
in the two green boxes are the same but the latter one only
covers parts of the head. (b) Same patch but different local
counts due to labeling deviations. (c) Same head but differ-
ent local counts for the three patches, which implies that dif-
ferent patches may have different local counts although they
cover the same one head. (d) Compared with the robust CE
loss, samples with larger prediction error contribute much
larger gradients from the MSE loss, which might drown the
useful and accurate gradients.

the ground truth count is G =
∑K

k=1 dk, and the predicted
count from the model is Ĝ =

∑K
k=1 d̂k, in which d̂k is

the predicted count for local count dk. Ĝ can be viewed as



two parts, Ĝright and Ĝerror. The former one is the pre-
dicted count when all dk are classified correctly, and the
latter one is the summation of the counting errors from all
misclassified samples. Finally, the above goal of minimiz-
ing E should be converted to the problem of minimizing
Ẽ = |G− (Ĝright + Ĝerror)|.
The Mean Count Proxies Criterion. During testing
stage, the count for a patch will be the proxy value δi if
it is classified as the i-th interval ci. Actually, when all
the patches are classified correctly, i.e., Ĝerror = 0, the Ẽ
should represent the discretization errors due to the interval
quantification. This can be demonstrated as follows:

Ẽ = |G− (Ĝright + Ĝerror)| = |G− Ĝright|
= |G− (n1δ1 + n2δ2 + ...+ nm−1δm−1)|

=

∣∣∣∣∣
m−1∑
i=0

(xi1 + xi2 + ...+ xini)−
m−1∑
i=0

niδi

∣∣∣∣∣ (2)

=

∣∣∣∣∣
m−1∑
i=0

((xi1 + xi2 + ...+ xini
)− niδi)

∣∣∣∣∣ .
From the above equation, we could conclude that if we let
δi =

∑ni

j=1 xij/ni, Ẽ will get the minimal value 0. In
other words, there will be no extra quantization errors when
transforming the regression task into an interval classifica-
tion problem, as long as we could choose a proper count
proxy value δi for each interval. And the optimal count
proxy is theoretically demonstrated as the average count
value of samples in corresponding interval.

The Uniform Error Partition Criterion. According to
the Equation 2, we have |G − Ĝright| = 0 when using
the proposed MCP criterion. Then we could derive that
Ẽ = |G− (Ĝright+ Ĝerror)| = |(G− Ĝright)+ Ĝerror| =
|Ĝerror| =

∣∣∣∑m−1
i=0 ei

∣∣∣, in which ei is the counting er-
ror from the i-th interval due to misclassification. Ob-
viously, it is nearly impossible to obtain a perfect model
with all patches correctly classified. For a specific interval,
the counting error depends on both the number of samples
within the interval and the misclassification cost of each
sample. Thus we try to minimize

∣∣∣∑m−1
i=0 ei

∣∣∣ with a com-
prehensive consideration of the above two factors.

We make further decomposition for ei. Firstly, the mis-
classification counting error cost ei is obviously propor-
tional to the number of samples ni. Secondly, for a single
sample of interval ci, it is more likely to be misclassified
to a nearby interval cj . And the corresponding error cost
ei→j is δj − δi, which is also approximately proportional to
li since the interval lengths of adjacent intervals are nearly
equal. In summary, Ẽ =

∣∣∣∑m−1
i=0 ei

∣∣∣ ≈ α
∣∣∣∑m−1

i=0 nili

∣∣∣ ∝∣∣∣∑m−1
i=0 nili

∣∣∣, in which we reasonably keep the constant α
of all intervals the same for simplicity.

Intuitively, the UEP criterion makes the task of local
count classification more easier to learn, yielding smaller
prediction errors. Since the local count dk in T follows a
long-tailed distribution due to the extremely large density
variation. If we only keep the same ni for all intervals, the
interval lengths of some intervals may be too large, which
should lead to much larger misclassification error cost for
them. Besides, if we keep the same li for all intervals, the
sample number among intervals may be too unbalanced to
train a well-performed classifier. Instead, the item nili pro-
vides a good trade-off for the interval difficulty (i.e., mis-
classification error cost) and the sample imbalance problem
among intervals.

3. More Discussions

In this section, we conduct further discussions so that our
approach can be better understood.

Further analysis on the effectiveness of IPH. From the
ablation studies in the maintext, we find a relatively higher
improvement for the IPH when using the multi-scale train-
ing. We provide a reasonable explanation as follows. With
the augmentation of multi-scale training, relatively easier
samples in the middle of each interval are optimized better,
while the relatively harder samples around the interval bor-
ders become a performance bottleneck due to the ambiguity.
On the contrary, after integrating with the IPH, the classi-
fication ambiguity for these harder samples is mitigated to
some extent. In this way, these harder samples tend to bene-
fit more from the multi-scale training, thus the performance
bottleneck might be broken.

UEP is helpful for the prediction on background. An-
other key difference for count regression and our method
is the way of dealing with background. Specifically, the
paradigm of count regression learns an exact value 0 for
the background. Such an approach has two disadvantages.
Firstly, it cannot help the model to learn discriminative fea-
tures, since all predictions less than 0 are equally considered
as correct predictions due to the existence of ReLU activa-
tion before the output. Secondly, it is much more difficult
to regress an accurate count, however a small regression er-
ror also matters due to large number of background sam-
ples. On the contrary, it is much easier to identify that if a
background patch falls into the background interval in our
method, thus avoiding the above problems. We further cal-
culate the count error contribution ratios of the background
for the two approaches under the same network structure.
The ratio is 10.21% for the MSE based regression model,
and is only 1.73% for our model, which demonstrates the
effectiveness of our method.



Potential negative impacts of limited max local count.
One may argue that the max count value is determined by
the statistics in the training set, which might lead to poor
generalization performance on unseen data. Let us clar-
ify this issue from three aspects. Firstly, patches with ex-
tremely large local count are relatively rare due to the long-
tailed distribution of local count. As a result, the counting
errors from these patches should not contribute much to the
final accuracy. Secondly, when the dataset is large enough,
the training set and test set can be considered as Indepen-
dent and Identically Distributed. In this circumstance, the
max local count is equal for both training set and test set.
Finally, the competitive results obviously clarify that the ef-
fectiveness of our method outweighs the negative impacts
of limited max local count.

4. Visualized results
In this section, we present the visualized results of our

method. Firstly, as shown in Table 1 and Table 2, our
model performs very well under various crowd density. In
particular, we observe an interesting phenomenon that our
model seems to be able to better identify the fine-grained
foreground regions compared with the ground-truth density
map. This phenomenon implies that our model might have
learned more discriminative information.

Secondly, we listed several cases where our model fails
to accurately estimate the crowd number in Table 3. The re-
gions with the worst prediction are marked with red rectan-
gles. We group these cases into following three categories:

(1) Errors caused by missing annotations. As shown in
the first row of Table 3, the missing annotation makes the
ground-truth inaccurate. Strictly speaking, this should not
be considered as a badcase, which however proves the su-
periority of our method in handling partial occlusions.

(2) Errors caused by severe occlusion. As shown in the
second row of Table 3, the umbrella above the head makes
it hard for our model to identify the boundary of the head.

(3) Errors caused by scarce training data. As shown in
the third row and the fourth row of Table 3, insufficient data
(night scenes and old photos) in the training set makes our
model perform worse in such scenes.
Fortunately, all of the above errors could be alleviated to
some extent by adding more training data.
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(a) Input Image (b) Ground-Truth (c) Prediction of UEPNet

Table 1: Visualized results under sparse scenes.



(a) Input Image (b) Ground-Truth (c) Prediction of UEPNet

Table 2: Visualized results under congested scenes.



(a) Input Image (b) Ground-Truth (c) Prediction of UEPNet

Table 3: Visualized results for relatively bad cases. The regions with the worst prediction are marked with red rectangles.


