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1. Ground Truth Edge Generation

We obtain the ground truth edges P̂e with [1]. Specif-
ically, object edges are identified by evaluating the query
point p from its k-nearest neighbors. We first find the k-
nearest neighbors of each query point from the object and
denote c as the center of these neighbors. We then calculate
the minimum distance v among all the neighboring points
to the query point. A query point p is classified as the edge
point if ||c − p|| > λ · v. We set λ = 5 and k = 100 for
our created dataset, and set λ = 1.8 and k = 150 for the
Completion3D dataset.

2. Evaluation Metrics

Following previous methods [10, 6, 7, 9], we use the CD
and Fréchet Point Cloud Distance (FPD) [7, 5] as the evalu-
ation metrics for the synthetic datasets and fidelity and reg-
istration errors for the KITTI dataset.

FPD. FPD evaluates the distribution similarity by the 2-
Wasserstein distance between the real and fake Gaussian
measured in the feature spaces of the point sets, i.e.

FPD(X,Y) = ∥mX − mY∥22 + Tr(ΣX +ΣY − 2(ΣXΣY)
1
2 ).

(1)

Fidelity. Fidelity measures the average distance from
each point in the input to its nearest neighbor in the out-
put. It evaluates how well the input points are preserved in
the output.

Registration Errors. Rotation and translation errors are
the evaluation metrics for the point cloud registration. More
specially, it measures the registration performances between
neighboring frames in the same Velodyne sequence. Two
types of inputs are evaluated: the partial points from the
raw scans, and the generated complete points by different
models. The rotation error is computed as 2cos−1(2 <

q1, q2 >2 −1), where q1 and q2 are the ground truth rota-
tion and the rotation computed from ICP, respectively. The
translation error is computed as ||t1 − t2||2, in which t1 is
the ground truth translation and t2 is the translation gener-
ated by ICP, respectively.

3. More Details of Conversion between Points
and Grids

1) Conversion from points to grids. We calculate the
initial grid features as the coordinate differences between
points and their corresponding eight nearby grid vertexes
in five different scales. This results in five tensors of sizes
3 × 2048 × 8, 3 × 1024 × 8, 3 × 512 × 8, 3 × 256 × 8
and 3× 128× 8, respectively. Corresponding to the differ-
ent point resolutions {2048, 1024, 512, 256, 128}, the five
voxel resolutions are {323, 163, 83, 43, 23}. A set of grid
features Pi

f , {i = 0, 1, 2, 3, 4} are obtained from the initial
grid features by several convolutional blocks (§3.2). The
quantitative comparison between our proposed grid trans-
formation and the Gridding of GRNet is shown in rows 3
and 4 of Table 6 in the main paper, i.e., our transformation
achieves 24.5% relative improvement compared to Grid-
ding (3.600 vs 4.768).

2) Conversion from grids to points. GRNet predicts
262,144 (643) points from every vertex feature, and then
samples 2048 points as the coarse output PC and use MLPs
to generate dense points from PC . In contrast, we directly
predict the dense points by adding the point offsets to the
grid centers. The number of points for each grid cell are de-
cided by the binary score pc and density value δc (§3.3.3).

4. Network Architecture Details

We express the 3D convolutions with its number of out-
put channels, the kernel size, the stride and padding val-
ues. For example, C3D(O1K3S1P1) indicates a 3D convo-
lutional layer with the number of output channel as 1, kernel
size as 3× 3× 3, the stride and padding values as 1. DC3D



PCN [10] PCN-FC [10] CDA [2] TopNet [6] CRN [7] GRNet [9] DPC [11] MSN [3] VE-PCN
Para. (M) 6.85 53.2 51.85 9.96 5.14 76.71 6.66 30.32 35.00
Time (ms) 57.5 21.4 614.9 63.1 61.3 124.3 331.3 346.7 450.1

Table 1: Space and time comparisons of different methods.

Methods CD
full pipeline 2.669
without LS

CD 2.886
without LCD 3.408
without Ld 2.843

without LE
BCE 2.842

Table 2: Ablation studies on the different losses. Results
are obtained by evaluating mean CD per point (10−4) on
our dataset.

represents a 3D deconvolutional layer. We set the dilation
value for all our convolutions as 1 except the first 3D con-
volution in the residual blocks of the edge generator.

The network architectures of the edge generator and
shape encoder are shown in Figures 1 and 2, respectively.
Figure 3 shows architectures of the refinement cells and the
shape decoder. Figure 3 (a) and (b) show the first four re-
finement cells and the last refinement cell, respectively. Ev-
ery cell shares similar architectures but with different fea-
ture dimensions. C1, O1 and O2 in the first four refinement
cells are {128, 128, 128}, {256, 128, 128}, {192, 64, 64}
and {129, 32, 32}, respectively.

Figure 3 (c) and (d) show the architecture of point gen-
erator in the shape completion module and the edge gener-
ator. Figure 3 (c) illustrates the prediction architectures for
the classification score pc and density value δc of each grid
cell. Figure 3 (d) presents the point set generation for each
grid. Prior to feeding the grid features into the convolutional
layers, grid features are concatenated with 2 dimensional
randomly sampled values to increase the point diversity in
a local patch.

5. Time and Space Complexity Analysis
The number of parameters and inference time of differ-

ent methods are shown in Table 1. Some layers in our net-
work are 1D CNNs instead of 3D CNNs (e.g. the architec-
ture of point generator) and thus we consume much smaller
parameters than voxel-based methods (CDA and GRNet).
We compute the average inference time of 5000 forward
steps on a Titan X GPU, and our time complexity is compa-
rable to other methods.

6. More Ablation Studies
More ablation studies on different losses are shown in

Table 2. We test the effects of LS
CD, LCD, Lo and LE

BCE by

setting the corresponding weights to be 0. The results are
obtained by testing on our created dataset.

7. More Experimental Results
7.1. Results on the PCN Dataset

We show the results of our method on the PCN dataset in
Table 3. All the other results are cited from the state-of-the-
art work PMP-Net [8]. We achieve lower average CD errors
compared to all prior works and obtain better performances
on the majority of object categories.

7.2. More Results on the Completion3D Dataset

More qualitative results on the validation data are shown
in Figures 4 and 5.

7.3. More Results on our Dataset

Table 4 shows the FPD evaluations from various meth-
ods. More qualitative results on seen categories of our
dataset are shown in Figures 6 and 7. More qualitative re-
sults on unseen categories are shown in Figure 8.

To further test the robustness of different models, we
occlude the partial input with different occlusion ratios p
that ranges from 20% to 40%. We directly adopt the mod-
els trained on seen categories for testing. The quantitative
results are shown in Table 5. More qualitative results are
shown in Figures 9 and 10.

7.4. More Results on the KITTI Dataset

Figure 11 shows the completion results on the KITTI
dataset. We evaluate the performances by calculating the
registration errors following PCN [10].

7.5. More Results on the Edge Generation

We show more experimental results on point cloud edge
generation in Figure 12.

8. Comparisons to SK-PCN [4]
SK-PCN proposes a similar thought that adopts skele-

ton generations to help the shape completion. However, our
edges are different from their meso-skeleton. The differ-
ences are shown in Figure 13 (The results of SK-PCN are
Fig. 9 of their paper). Their meso-skeleton focus on the
overall shapes. In contrast, our edges focus on high fre-
quency components (e.g. thin structures), which are dif-
ficult to generate in existing methods. This can be evi-
denced from the limitation cases in Fig. 10 of SK-PCN



Methods
Mean Chamfer Distance (CD) per point (10−3)

Average Plane Cabinet Car Chair Lamp Sofa Table Vessel

FoldingNet 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12

AtlasNet 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN 9.64 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67

GRNet 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
CRN 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05

PMP-Net 8.66 5.50 11.10 9.62 9.47 6.89 10.74 8.77 7.19
Ours 8.32 4.80 9.85 9.26 8.90 8.68 9.83 7.30 7.93

Table 3: Quantitative results on the PCN dataset.

PCN [10] PCN-FC [10] CDA [2] TopNet [6] CRN [7] GRNet [9] DPC [11] MSN [3] VE-PCN
FPD 5.584 6.634 9.142 7.7536 3.054 6.513 8.347 3.904 1.882

Table 4: FPD comparisons on different methods. The lower, the better.

Ratios
Mean Chamfer Distance per point (10−4)

PCN [10] PCN-FC [10] CDA [2] TopNet [6] CRN [7] GRNet [9] DPC [11] MSN [3] VE-PCN

20% 5.642 6.230 7.485 6.732 3.554 4.016 2.975 3.213 2.565
30% 5.991 6.704 7.771 7.245 3.932 4.646 4.681 4.084 3.055
40% 7.066 7.934 8.741 8.622 5.094 10.746 8.210 6.546 5.129

Table 5: Quantitative comparison of occluded point clouds under different occlusion rates.

paper. Moreover, SK-PCN generates the complete points
by learning displacements from skeletal points with a local
adjustment strategy. In contrast, we synthesize the complete
points by injecting the edge features into the completion
decoder with a voxelization strategy. This voxel structure
further enables our point generation to be confined within
well-defined spaces of the grid cells, and thus eliminates
the generation of spurious points that are commonly seen in
other methods.
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Figure 1: Architecture details of the edge generator.
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Figure 2: Architecture details of the shape encoder.
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Figure 3: Architecture details of the refinement cells and shape decoder.



Input PCN TopNet GRNet VE-PCN GT

Figure 4: Qualitative comparisons on the Completion3D dataset (1/2).



Input PCN TopNet GRNet VE-PCN GT

Figure 5: Qualitative comparisons the Completion3D dataset (2/2).



Input PCN CDA TopNet VE-PCN GTCRN GRNet DPC MSN
26,185,198,208,  275, 297, 333,335,338, 346,389,487,548,

593, 594, 711, 831, 1067, 1094, 1097, 1120, 1124,1128, 1142, 1235,2202

Input PCN CDA TopNet VE-PCN GTCRN GRNet DPCECG MSN

Figure 6: Qualitative comparisons on seen categories of our dataset (1/2).



Input PCN CDA TopNet VE-PCN GTCRN GRNet DPC MSN Input PCN CDA TopNet VE-PCN GTCRN GRNet DPCECG MSN

Figure 7: Qualitative comparisons on seen categories of our dataset (2/2).



Input PCN CDA TopNet VE-PCN GTCRN GRNet DPC MSN
6,30,36,42,60,78,114,180,444,450, Input PCN CDA TopNet VE-PCN GTCRN GRNet DPCECG MSN

Figure 8: Qualitative comparisons on unseen categories of our dataset.



Input PCN CDA TopNet VE-PCN GTCRN GRNet DPC MSN
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Figure 9: Qualitative comparisons on different occlusion ratios (1/2).



Input PCN CDA TopNet VE-PCN GTCRN GRNet DPC MSN
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Figure 10: Qualitative comparisons on different occlusion ratios (2/2).



148,

Figure 11: Completion results on KITTI.
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Figure 12: Edge generation results. Bottom values are the
CD errors per point (10−4).



S
K
-P
C
N

O
ur
s

Input Skeleton GT Input Skeleton GT Input Skeleton GT

Input Edges GT Input Edges GT Input Edges GT

Figure 13: Edge (ours) vs. mes-skeleton (SK-PCN) generation.
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