
Appendices
A. Network Details

Detailed information of the layers of AA-RMVSNet is
listed in Tab. 1. Note that the procedure of feature extrac-
tion is identical for all N images and the procedure of cost
volume processing is identical for all D depth hypotheses.

B. Deformable Sampling in Intra-view AA

In terms of feature extraction for matching, we expect
regions with rich texture to be processed by convolutions
with smaller receptive fields so that tiny and detailed parts
will be preserved during matching. While for low-textured
or textureless regions, such as plain surfaces, we prefer a
larger receptive field where more context information can
get aggregated for more reliable matching.

The proposed intra-view AA module adopts deformable
convolution to do the aforementioned job adaptively. For a
pixel p at the object boundary, all sampling points of a de-
formable convolution kernel tend to be located on the same
surface as p. In contrast, for the pixel in textureless re-
gions, sampling points are spread over a larger region and
the receptive field is expanded. Fig. 1 visualizes sampling
locations of deformable convolution kernels. On the thin
cable of the earphone, sampling points tend to be concen-
trated on the cable itself, while for other low-textured areas
of the earphone, the receptive filed is expanded. At bound-
ary regions of objects, sampling points are gathered at the
same side of the kernel center.

C. View Reweighting in Inter-view AA

In order to handle an arbitrary number of input views and
eliminate the influence of unreliable matching at occluded
regions, an inter-view AA module is leveraged to our AA-
RMVSNet. The inter-view AA module contains a CNN for
yielding pixel-wise attention maps for per-view cost vol-
umes adaptively. For an area in the reference image, if this
area is occluded in the source image, lower weights should
be assigned to suppress local matching. On the contrary, if
an area is well-captured and unoccluded, higher weights are
assigned to enhance reliable local matching.

Fig. 2 visualizes two attention maps by gray-scale im-
ages. As is clearly framed in red, for areas well-captured
in the corresponding source images, attention values are
larger. In this way, reliably matched areas of per-view cost
volumes are enhanced while those occluded unreliable re-
gions are suppressed by low weights.

Figure 1. Deformable sampling in different areas, e.g. thin object,
weak-textured region and object boundary. Green points are cen-
ters of convolution kernels and red ones are sampled points with
adaptive offsets yielded by sub-networks of deformable convolu-
tions.

(a) Reference image (b) Pixel-wise attention map (c) Neighboring source image

Figure 2. Visualized pixel-wise attention maps yielded by the
inter-view AA module. Brighter areas represent higher weights
assigned. When matching source images in (c) to the reference
image (a), corresponding per-view attention maps are shown as
(b).

D. Depth Comparison in Ablation Experi-
ments

To further demonstrate the effectiveness of the proposed
intra-view AA module and inter-view AA module, we vi-
sualize some representative depth maps for each ablation
experiment.

As is shown in Fig. 3, the intra-view AA module man-
ages to eliminate noises at textureless surfaces and bound-
ary areas of objects. At the same time, the inter-view
AA module is able to preserve more details for those re-
gions easy to be occluded, e.g. the handle. Integrated both
AA modules into the proposed network, our AA-RMVSNet
benefits from both modules and is capable of predicting ac-
curate and complete depth maps for images under varying
conditions.
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Table 1. Details information of network layers of AA-RMVSNet. Conv, TransConv and DeformConv denote 2D convolution, 2D transposed
convolution (also known as deconvolution) and 2D deformable convolution, respectively. GN represents group normalization while BI
represents bilinear interpolation.

E. Ablation Study on Experiment Settings

As is showed in Tab. 2, we investigate the influence of
variant numbers of input views N , numbers of depth hy-
potheses D and resolutions of input images W and H .

Number of Views Our AA-RMVSNet is capable of pro-
cessing an arbitrary number of views and leveraging the
variant importance in multiple views due to the proposed
inter-view AA module. With fixed D and image resolution,
we compare reconstruction results under N = 3, 5, 7. As
is shown in Tab. 2, the larger N turns, the better the recon-



(a) Reference image (b) Baseline (c) +intra-view AA (d) +inter-view AA (e) AA-RMVSNet
Figure 3. Comparison between depth maps predicted by the network with and without the two proposed AA modules and full AA-
RMVSNet.

N D Resolution Acc.(mm) Comp.(mm) O.A.(mm)
3 256 480× 360 0.424 0.387 0.405
5 256 480× 360 0.414 0.358 0.386
7 256 480× 360 0.408 0.351 0.380
7 512 480× 360 0.387 0.356 0.372
7 512 640× 480 0.381 0.352 0.366
7 512 800× 600 0.376 0.339 0.357

Table 2. Ablation study on number of input views N and number
of depth hypotheses D on DTU evaluation set (lower is better).

struction results are in terms of all metrics. It demonstrates
that our proposed inter-view AA module can well enhance
the valid information in the good neighboring views and
eliminate bad information in occluded views.

Number of Depth Hypotheses In AA-RMVSNet, cost
volumes are regularized recurrently by a RNN-CNN hy-
brid network. In this way, memory usage is reduced con-
siderably and more room is left for finer division of depth
space (or known as plane sweep). We compare reconstruc-
tion quality when D = 256 and when D = 512 with fixed
N = 7 and image resolution 480 × 360. As a result, finer
depth division lowers reconstruction error.

Resolution of Images Since our AA-RMVSNet regular-
izes cost volumes in a memory-efficient fashion, we are able
to use images of larger resolution for reconstruction. We fix
N = 7 and D = 512 and compare reconstruction results
with image resolution of 480× 360 and 800× 600. Exper-
imental results demonstrate that larger resolution is benefi-
cial for reconstruction.

F. More Point Cloud Results
We visualize all results of DTU evaluation set, the inter-

mediate set of Tanks and Temples benchmark and Blended-
MVS validation set respectively in Fig. 4, Fig. 5 and Fig. 6.

Our AA-RMVSNet demonstrates its robustness and scala-
bility on scenes with varying depth ranges.



Figure 4. All point clouds results of DTU evaluation set.



Figure 5. All point clouds results of the intermediate set of Tanks and Temples benchmark.



Figure 6. All point clouds results of BlendedMVS validation set.


