
Deep Hybrid Self-Prior for Full 3D Mesh Generation
Supplemental Material

Xingkui Wei1∗ Zhengqing Chen1∗ Yanwei Fu1† Zhaopeng Cui2 Yinda Zhang3†

1 Fudan University 2 Zhejiang University 3 Google

In this supplementary material, we show details about
the network architecture, more qualitative results, compari-
son with marching cube based methods, failure cases, qual-
itative comparison with sparse inputs, more comparison to
baseline methods, and ablation study.

A. Implementation Details

In this section, we introduce detailed network architec-
ture for our 2D- and 3D-prior network. Note that both net-
work is initialized with random weights and trained to re-
construct dense structures from randomly initialized input
features with the sparse supervisions. Different values of
hyperparameters (optimization steps, std. dev. of initial-
ization and loss weights) have been tried, and the method
works for most settings. In practice we choose the hyperpa-
prameters for the best trade-off between accuracy and effi-
ciency.

A.1. 3D-prior Network

We use a MeshCNN [2] based 3D-Prior network intro-
duced in Point2Mesh [3] to generate an initial mesh and the
refined output mesh. We also adopt residual and skip con-
nections in MeshConv [2] layers which compose a residual
block. ReLU is used as the active function after each Mesh-
Conv layer except for the last layer. The network receives
an ne × 2× 3 dimensional initial random vector z as input
where ne is the number of input edges , and the network
outputs an edge feature vector ∆E with the same dimen-
sion that represents the displacement of two vertices on each
side of the edges. In each refinement iteration, the 3D-prior
network is optimized for 2000 steps with a learning rate of
1e-3, and the weight of the edge loss is 0.2.

In Figure A, we show the detailed architecture of our
3D-prior network. The whole network includes six residual
blocks, two MeshPool layers and two MeshUnpool layers.
Each residual block contains three MeshConvs. Input and

∗Equal contribution
†Corresponding author

output channel number of each residual block and the pool
proportion of each MeshPool layer are shown in Figure A.

A.2. 2D-prior Network

We follow DIP [8] to design our 2D-prior network. An
encoder-decoder architecture with several skip-connections
is adopted for all of our experiments with same hyper-
parameters except for training steps. The number of training
steps is 2000 for dense color texture map generation, while
for dense XYZ map generation the number is 4000 with a
learning rate of 1e-2. LeakyReLU [4] is used as the ac-
tive function. The downsampling operation in the network
is implemented as convolution with strides, and for up-
sampling we use bilinear upsampling. In each convolution
layer, a reflection padding is used instead of zero padding.
The input random feature map and the output dense UV
map have the same spatial resolution 1024× 1024.

In Figure B we provide the details of our 2D-prior net-
work architecture. The whole network contains five down-
scale convolution blocks, five upscale convolution blocks
and five skip connection blocks. The layers and parameters
of each block are shown in the right part of Figure B.

A.3. UV Flattening

We use OptCuts[6] to create a UV atlas from the 3D
mesh. The UV flattening via OptCuts may not be ideal
and would affect the 2D prior network output, but most of
artifacts can be fixed by the 3D prior network with strong
supervision and regularization, and UV map will be regen-
erated with improved geometry afterward. Therefore, we
find our method doesn’t need perfect UV-maps at the be-
ginning. UV flattening is challenging for complex geome-
try, but we only need the UV space to preserve some local
smoothness regardless of other criteria, such as distortion
and seam lengths.

B. More Qualitative Results
In this section, we show more qualitative results in Fig.

C and Fig. D. In Fig. 4 of main paper, we showed compar-
ison to Poisson [5] and Point2Mesh [3] on a few examples.

Input z

1×5 MeshConvs, n channels,

Batch Norm, ReLU

1×5 MeshConvs, n channels,

Batch Norm, ReLU

1×5 MeshConvs, n channels,

Batch Norm, ReLU

Output ΔE

MeshPool_0.8×E MeshPool_0.72×E

6 ×24

24 ×48

48 ×96

MeshUnPool MeshUnPool

96 ×48

48 ×24

24 ×6

Residual

Block

Figure A. Architecture of 3D-prior network. In general, it consists of six residual blocks. The detailed structure and channels
of the residual blocks are shown in the left.

Input 𝒛 Output map

3×3 convs, 72 channels, stride=1

Downsample

Batch Norm. LeakyReLU

3×3 convs, 72 channels, stride=1

batch norm. ReLU

Downscale convs Upscale convs

Skip connections

Batch Norm

3×3 convs, 72 channels, stride=1

Batch Norm. LeakyReLU

1×1 convs, 72 channels, stride=1

Batch Norm. LeakyReLU

Upsample

1×1 convs,4 channels, stride=1

Batch Norm. LeakyReLU

Figure B. Architecture of 2D-prior network. The layers of each component are shown in the right.

Here we add comparison to more previous works in Fig.
C. For each example in Fig. D, we show the input colored
point cloud and the results from Screen Poisson Surface Re-
construction [5] (Poisson), Point2Mesh [3] (P2M), and our
model. We show the mesh results with and without texture.
We also show comparison on the surface reconstruction task
on the samples with complicate structures in Fig. E.

Overall, our model produces shapes and textures that
recovers more details and maintains better visual quality.
Screen Poisson surface reconstruction tends to make large
geometric errors when the points are sparse or the surface
normal cannot be estimated accurately, such as the wing of
the aeroplane and the chair legs. The texture map is usually
blurry compared to our result generated with hybrid priors.

F-score↑ CD↓
MC-APSS 93.4 0.0650

MC-RIMLS 96.6 0.0597
P2M-S 97.3 0.0589
Ours 97.7 0.0526

Table A. Comparison between our method and marching
cube based methods on synthetic data. The best results are
noted by Bold. CD is short for Chamfer Distance.

Input Points2Surf MPC-IER Ours
Input Points2Surf MPC-IER Ours

Figure C. Comparison between our method and more surface reconstruction methods on synthetic data.

C. Comparison with More Surface Recon-
struction Methods

We show the surface reconstruction comparison with two
recent marching cube methods implemented in Meshlab,
named MC-APSS[1] and MC-RIMLS[7]. We also show

the comparison with Point2Mesh [3] with a HC Laplacion
smooth [9], namely P2M-S. The Chamfer distance and F-
Score are reported in Tab. A, which are worse than our
method.

OursPoissonInput Poisson P2M Ours

GT Mesh

Figure D. Comparison between our method and other surface reconstruction methods. The groundtruth meshes used to
sample input point clouds are shown in the first row.

Input Poisson P2M Ours GT

Figure E. Comparison between our method and other methods on surface reconstruction.

Ours GT Ours GT
Ours GT Ours GT

Figure F. Failure cases in geometry and texture reconstruction.

D. Failure Cases

Fig. F shows some typical failure cases of our method
on geometry and texture reconstruction. Some local struc-
tures are not separated correctly due to taking convex hull as
initialization. Meanwhile, our method is unable to recover
high frequency strip texture or tiny patterns with unstruc-
tured sparse input colored points.

2% 5% 10%
Poisson 77.3 53.8 25.9

P2M 70.1 50.4 18.0
Ours 83.5 69.3 37.6

Table B. Comparison on F-score between our method and
other surface reconstruction methods with noisy input. The
best results are noted by Bold.

(a) (c)(b) (d)

Figure G. Surface reconstruction results of very sparse
spherical input. (a) Input point cloud with only 100 points;
(b) 3D mesh generated by Point2Mesh; (c) Our result; (d)
Ground truth.

Ours

(a)

Poisson

(b)

(c)

Input P2M OursPoisson

Figure H. Generated textured mesh with different sparse-
ness. (a) 1k input points; (b) 5k input points; (c) 10k input
points.

E. Robustness Evaluation
E.1. Robustness against Noise

We test the robustness of our method by manually adding
Gaussian noise to the original coordinate value on the input
point cloud. Table B shows quantitative results as the stan-
dard deviation of noise increased from 2% to 10%. We also
conduct experiments that add Gaussian noise with standard
deviation as 10% on color. The NIQE results of MeshCNN
baseline, Poisson and our method are 22.47, 23.90 and
20.16 (lower is better). Compared to the case without noise
(see Sec. 4.4), our method suffers the minimum decline,
which indicates comparatively good robustness.

E.2. Robustness against Sparsity

In Fig. G, we show a toy example where only 100 points
are sampled from the ball as the input for surface recon-
struction in order to understand the advantage of our hy-
brid 2D-3D prior over the 3D only prior in Point2Mesh.
Point2Mesh completely fails since no reasonable prior can
be learned by 3D GCN from such an extremely sparse in-
put. In contrast, our method is successful in reconstructing
a reasonable ball. We would like to advocate that this is
mostly benefit from the strong prior encoded in the XYZ
map.

Fig. H shows results with input point clouds of differ-
ent sparseness on a textured mesh. For Point2Mesh, noisy
or large planar surfaces show up quickly when inputs be-
come sparse, while our method still produce smooth surface
maintaining roughly correct geometry with certain level of
details. With dense input and simple structure, Poisson can
generate both good and texture information, while when the
input become sparser, it lose more details of texture and ge-
ometry compared to our method.

F. Comparison for Texture Generation
Our model produces a high-resolution texture for each

mesh, by reconstructing a dense texture map from the sparse
UV color map with the 2D-prior network. In this section,
we compare our method to a texture generation baseline
method which directly predicts color for each point in the
MeshCNN [2] framework. On a high-level, this method
uses 3D-prior only to recover the texture compared to our
method that uses both 2D and 3D prior. The network ar-
chitecture of the baseline is the same as our 3D-Prior net-
work. Instead of producing the displacement of vertices, the
MeshCNN is fed with the predicted mesh shape to build the
graph and trained to predict the RGB color of each vertex.
The feature on each graph node is random initialized and
the loss function is

Lcolor =
∑
p̂

‖Cp̂ − Cq‖, (1)

OursBaselineInput OursBaselineInput Baseline Ours Baseline Ours

Figure I. Qualitative comparisons of texture between our method and the baseline method which uses a MeshCNN network
to predict vertex color.

0 1 2 3 4 5
#iter

95.0

96.0

97.0

98.0

99.0
F-

sc
or

e
F-score
Chamfer Distance

0.050

0.055

0.060

0.065

0.070

CD

Figure J. Performance w.r.t iteration.
where q is the closest vertex in the input point cloud for
each p̂, and Cp̂ and Cq are the color estimated for p̂ and
observed on q. Note that the p̂ is randomly sampled from
the predicted mesh as described in Section 3.2 of the paper,
and Cp̂ is calculated by linearly interpolating the predicted
color of three vertexes on the corresponding triangle mesh
face. Finally, the color on mesh faces is calculated with
vertex color via linear interpolation.

The qualitative results are shown in Fig. I. The qual-
ity of this baseline results is highly restricted by the vertex
number of the predicted triangle mesh. Moreover, it’s ob-
served that the baseline method tends to be blurry and lose
high frequency information. In contrast, our method always
produces texture of high visual quality.

G. Ablation Studies
In this section, we provide more ablation studies of our

method.

G.1. Performance w.r.t Iteration

As shown in Fig. J, we report F-score and Chamfer Dis-
tance of each iteration to measure the convergence. Typi-
cally the numbers stabilize in 3 iterations.

G.2. Effect of Edge Loss in 3D-Prior Network

As mentioned in Section 3.1, we add a loss term to con-
strain the edge length for the MeshCNN, which speeds up
the converging speed. In Figure K (a) (b), we show the out-
put of 3D-prior network w/o or w edge loss under different
iteration steps and the final reconstruction mesh w/o or w
edge loss in Figure K (c) (d). Under the same iteration, the
output mesh from 3D-prior network optimized with edge
loss apparently exhibit better geometry, e.g. less holes and
folded faces, smoother surface, compared to the case with-
out edge loss . Overall, to achieve similar mesh quality we
get in 1000 steps using the edge loss, the network without
the edge loss would need at least 4000 steps.

The edge loss can be also calculated very efficiently
with known topology thus intrigues negligible computa-
tional cost to the optimization. Overall, we can speed up
the convergence of MeshCNN for 3-4 times.

G.3. Effect of Gaussian Permutation in 2D-Prior
Network

As illustrated in Section 3.2.2 of our main submission,
our 2D-Prior network takes as input a random noise fea-
ture map z + ε, and the ε serves as a Gaussian permutation
in each training step to prevent the network from overfit-
ting. In this section, we show some qualitative comparison
results in Figure L with ε sampled from different standard
deviations.

As shown in Figure L, a larger permutation makes the re-
sult smoother, but also lose high frequency information. On
the contrary, the network with smaller permutation tends to
be overfitting. In practice, we choose 0.02 as the standard
deviation of ε for both XYZ map and texture map genera-
tion.

References
[1] Gaël Guennebaud, Marcel Germann, and Markus Gross. Dy-

namic sampling and rendering of algebraic point set surfaces.
In Computer Graphics Forum, volume 27, pages 653–662.
Wiley Online Library, 2008.

[2] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (TOG), 38(4):1–12,
2019.

[3] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-
Or. Point2mesh: A self-prior for deformable meshes. ACM
Trans. Graph., 39(4), 2020.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–
1034, 2015.

[5] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (ToG),
32(3):1–13, 2013.

[6] Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin
Solomon, and Alla Sheffer. Optcuts: Joint optimization of
surface cuts and parameterization. ACM Siggraph Asia, 2018.

[7] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. Fea-
ture preserving point set surfaces based on non-linear kernel
regression. In Computer Graphics Forum, volume 28, pages
493–501. Wiley Online Library, 2009.

[8] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9446–9454,
2018.

[9] Jörg Vollmer, Robert Mencl, and Heinrich Mueller. Improved
laplacian smoothing of noisy surface meshes. In Computer
graphics forum, volume 18, pages 131–138. Wiley Online Li-
brary, 1999.

(a)

iter-1 step-1000 iter-1 step-2000 iter-1 step-3000 iter-2 step-4000

iter-1 step-400 iter-1 step-800 iter-1 step-1000 iter-2 step-2000

(b)

(c) (d)

w/o edge loss with edge loss

Figure K. Results (a) without edge loss (b) with edge loss under different iteration steps and the final reconstruction mesh
(c)without edge loss, (d)with edge loss.

SD = 0.05 SD = 0.02 SD = 0.01

Geometry

Texture

Figure L. Geometry and texture outputs with perturbation ε sampled from different standard deviations (SD).

