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In this supplementary material, we provide additional
ablation study and the visualization for our approach.

A. Additional Ablation Study
To further evaluate the performance impact of different

components in our network, we report additional results on
the selections of hyperparameters and architectures. We
conduct all these experiments on ModelNet40 [6] under the
arbitrary-view setting.

A.1. Backbone network
We first examine the performance of our method with

different CNN backbone networks: AlexNet [2], ResNet-
18 [1], ResNet-50 [1] and ResNet-101 [1]. As shown in
Tab. 1, a more efficient backbone network produces better
performance, as variants of the ResNet architecture outper-
form AlexNet significantly. However, the performance mar-
gin among the ResNet backbones are much less noticeable,
with the deeper ResNet-101 achieves less than 1% gain in
accuracy over ResNet-18. We choose the ResNet-18 net-
work for our implementation since it performs reasonably
well while being less computationally expensive.

A.2. Obtaining the global representation
As mentioned in Sect. 4.3, Global Average Pooling

(GAP) is performed on the outputs of the Transformer En-
coder in canonical view aggregator to obtain a global rep-
resentation of the 3D shape. Here we compare the GAP to
other methods in producing the global representation, in-
cluding Global Max Pooling (GMP) and concatenating the
features directly. As shown in Tab. 2, we can see that GAP
performs noticeably better than GMP, while marginally out-
performing the direct concatenation of features. One possi-
ble explanation for GMP’s lower performance is that the
gradients are only back-propagated to the maximum ele-
ments. For our particular network design, this could poten-

Table 1. Results with different CNN backbone networks.
Backbone Per Class Acc. Per Ins. Acc.
AlexNet [2] 75.94% 78.88%
ResNet-18 [1] 84.01% 86.91%
ResNet-50 [1] 83.64% 87.18%
ResNet-101 [1] 84.34% 87.77%

Table 2. Comparing methods for obtaining global representation.

Per Class Acc. Per Ins. Acc.
Concat. 83.76% 86.42%
GMP 82.77% 85.41%
GAP 84.01% 86.91%

Table 3. Impact of the weighting factor λ for the Canonical View
Feature Separation Loss.

Per Class Acc. Per Ins. Acc.
λ = 1.0 82.97% 85.12%
λ = 0.5 81.06% 84.02%
λ = 0.1 84.01% 86.91%

Table 4. Comparison of learnable spatial embeddings with fixed
sinusoidal positional embeddings.

Per Class Acc. Per Ins. Acc.
Fixed 82.14% 85.41%
Learned 84.01% 86.91%

tially be harmful for learning diverse and robust canonical
view features.

A.3. Loss coefficient λ
As defined in Eq. (11), the overall loss of our network

consists of the classification loss Lcls and the Canonical
View Feature Separation Loss (CVFSL) Lsep, where the
coefficient λ controls the weighting factor between the two
loss functions. We conduct experiments to examine how λ
can affect the performance. As seen in Tab. 3, increasing λ
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Figure 1. Visualization of shape features learned by MVCNN-M (a) and our method (b) via t-SNE on ModelNet40 train set.
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Figure 2. Visualization of shape features learned by MVCNN-M (a) and our method (b) via t-SNE on ModelNet40 test set.

from 0.1 to 0.5 and 1.0 lowers the classification accuracy.
This shows that a good balance between the classification
loss and the CVFSL is important for maximizing the per-
formance. We set λ = 0.1 for our implementation in all
experiments.

A.4. Positional embedding
Positional embedding is crucial in Transformer-based ar-

chitectures to capture sequential information of the inputs.
Vaswani et al. [5] originally adopts fixed sinusoidal posi-
tional embeddings to represent positions, where the t-th in-
put’s sinusoidal positional embedding is defined as

PE(t,2i) = sin (t/1000002i/d) (1)

where d is the feature dimension and i = 1, 2, ..., d.

As mentioned in Sect. 4.3, our approach uses learnable
spatial embeddings F se = Ψ(F s) to encode positional in-
formation, where F s is the spatial representation inferred
from the canonical view features F c by a two-layer MLP
Ψ and is constrained by Canonical View Feature Separa-
tion Loss (CVFSL). To compare the performance impacts
of fixed and learned embeddings, we substitute the learned
spatial embedding F se with fixed sinusoidal positional em-
beddings. As shown in Tab. 4, the classification results drop
by 1.87% and 1.50% in two accuracies, which demonstrates
the effectiveness of learnable spatial embeddings.



B. Visualization
In Fig. 1 and Fig. 2, we visualize the features learned by

MVCNN-M [3] and our method on both the train set and the
test set of ModelNet40 under the arbitrary-view setting. We
perform t-SNE [4] on features of object instances from all
classes to visualize the feature discriminability on a macro
level. According to Fig. 1 and Fig. 2, in both the train set
and the test set, features from our method display much bet-
ter clustered distributions under t-SNE than those produced
by MVCNN-M [3]. Specifically, we can observe both lower
intra-class variance and higher inter-class variance in the
results of our method compared to MVCNN-M [3], which
reflects better overall shape classification performance on
ModelNet40 with arbitrary view.
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