
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in
Image Generation Supplementary Material

Yuxiang Wei1*, Yupeng Shi1, Xiao Liu2, Zhilong Ji2, Yuan Gao2, Zhongqin Wu2, Wangmeng Zuo1,3 (�)

1Harbin Institute of Technology, 2Tomorrow Advancing Life, 3Pazhou Lab, Guangzhou

{yuxiang.wei.cs, csypshi}@gmail.com {liuxiao15, jizhilong, gaoyuan23, wuzhongqin}@tal.com
wmzuo@hit.edu.cn

A. Proof of Proposition
We first give a brief proof of the proposition that related

to SeFa [2] in the main paper.

Proposition 1. Let W = UΛVT be the singular value
decomposition (SVD) of the weight parameter W. Let z′ =
VT z, W′ = UΛ, and define G1(z) = Wz, G′

1(z
′) =

W′z′. We have,

1. G′
1(z

′) is equivalent with G1(z), i.e., G1(z) = G′
1(z

′).

2. Hard orthogonal Jacobian constraint can be attained,
i.e., [

∂G′
1

∂z′i

]T
∂G′

1

∂z′j
= 0. (1)

Proof.
1.

G1(z) = Wz = UΛVT z = UΛz′

= W′z′ = G′
1(z

′).
(2)

2. [
∂G′

1

∂z′

]T
∂G′

1

∂z′
= [W′]

T
W′ = ΛTUTUΛ

= Λ2,

(3)

where Λ is diagonal.
[
∂G′

1

∂z′
i

]T
∂G′

1

∂z′
j

is the off-diagonal entry
of Eqn. 3 when i ̸= j, and thus to be zero.

B. Additional Qualitative Results
B.1 CLEVR-1FOV Dataset

Fig. 1 shows the qualitative results on the CLEVR-1FOV
by our OroJaR. CLEVR-1FOV has only one factor of varia-
tion: a red cube’s location along a single axis. From Fig. 1,
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our OroJaR can successfully deactivate the redundant di-
mensions while controlling the position of the object with
the only activated dimension (the top left row).

B.2 CLEVR-U Dataset

Fig. 2 shows the qualitative comparison with SeFa [2]
and Hessian Penalty [1] on the CLEVR-U dataset. CLEVR-
U indicates that we train the model on CLEVR-Simple (4
factors of variation, i.e., horizontal and vertical positions,
shape, and color) by setting the dimension of input to 3,
which is an underparameterized setting. Obviously, SeFa
fails to disentangle the four factors, which is shown that
each dimension controls all four variations at the same time.
Hessian Penalty also entangles the position with shape vari-
ation (e.g., 2nd and 3rd rows). On the contrary, our OroJaR
still learned to control the variations of horizontal position,
vertical position, and shape (entangles with color) indepen-
dently. The results indicate that our OroJaR is superior in
disentangling spatially correlated variations (e.g., shape and
position).

B.3 BigGAN

Fig. 3 shows a more comprehensive qualitative compar-
ison with Hessian Penalty [1] and Voynov [3] on BigGAN.
One can see that, three methods discover similar latent di-
rections (i.e., zoom, rotate, and smoosh nose). However,
Voynov [3] gives a degraded results when rotating the dog
to the left side. It is worth noting that, Hessian Penalty
finds directions that are very similar to ours. For rotation
and smoosh nose directions, the cosine similarities between
our method and Hessian Penalty reach 0.99. This may be
caused by the limitation of pre-trained GAN. Nonetheless,
compared with Hessian Penalty, our method performs a bet-
ter zoom editing quality.
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Table 1: Comparison of Variation Predictability Metric (VP) for different settings and SeFa on Dsprites.

Method GAN L0 L1 L2 L3 L4 L0∼1 L0∼2 L0∼3 L0∼4 SeFa Ours(L0∼3)
VP(%, ↑) 30.9 47.6 48.1 50.2 36.4 35.0 48.8 53.5 54.7 52.3 48.6 54.7
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Figure 1: Qualitative results on the CLEVR-1FOV by our OroJaR. We randomly sample a 12-dimensional input vector z
from a normal distribution, and each row corresponds to one of the dimensions. Moving across a row, we vary the value of
dimension zi from −2 to +2 while keeping the other 11 dimensions unchanged. It can be seen that, the redundant dimensions
are successfully deactivated. While the only activated dimension (the top left row) controls the unique factor of variation in
the dataset.

C. Ablation Study
To demonstrate the effectiveness of our OroJaR, we train

a simple GAN (6 layers, the network architectures are
shown in Fig. 4.) on the Dsprites dataset under three dif-
ferent settings:

• Firstly, we train the GAN without applying the OroJaR
(GAN).

• Secondly, we train the GAN by applying OroJaR to
every single intermediate layer (L0 to L4).

• Thirdly, we train the GAN by applying the OroJaR to
the first multiple layers (L0∼2 to L0∼4).

Fig. 5 and Table 1 show the qualitative and quantitative
comparison among these settings. The results on a single

intermediate layer (L0 to L4) show that the earlier layers
are more effective in deactivating the redundant dimensions,
resulting in better disentanglement. By applying OroJaR to
the deeper layer, the benefit of OroJaR to the disentangle-
ment first increases and then sharply decreases. Nonethe-
less, applying OroJaR to a single intermediate layer is not
sufficient to learn a well-disentangled model, and applying
OroJaR to the first multiple layers helps learn a better dis-
entangled model. Our OroJaR empirically achieves the best
disentanglement performance when D corresponding to the
last layer before the last upsampling layer.
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Figure 2: Comparison of disentanglement quality by SeFa [2], Hessian Penalty [1], and our OroJaR on the CLEVR-U dataset.
CLEVR-U indicates that we trained the model on CLEVR-Simple (4 factors) by setting the dimension of input to 3. For each
method, we randomly sample a 3-dimensional Gaussian vector, and each row corresponds to one of the dimensions. Top: In
this underparameterized setting, SeFa learns an entangled representation, and each dimension controls all four variations at
the same time. Middle: Hessian Penalty also entangles the shape with position variation. When moving the object along a
direction, the shape of the object is also changed at the same time (the last two rows). Bottom: Our method learns a better
disentangled result. From top to down, each dimension controls the variations of vertical position, horizontal position, and
shape (entangles with color), respectively.
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Figure 3: Comparing the quality of latent space editing by our OroJaR, Hessian Penalty [1] and Voynov [3]. Voynov [3]
learns entangled rotation factor, and gets a degraded results when rotating the dog to the left side. Hessian Penalty learns a
similar rotation and smoosh nose factors with ours, but our method achieves a better zoom editing quality.
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Figure 4: Network architectures of simple GAN used on Dsprites experiments. Conv(k, s, p) and DeConv(k, s, p) denote
convolutional layer and transposed convolutional layer where k is kernel size, s is stride and p is padding size. FC(d) denotes
fully connected layer with d as output dimension. LReLU denotes the Leaky ReLU nonlinearity.
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Figure 5: Effectiveness of our OroJaR in disentanglement learning. Lx means OroJaR is applied to the x-th layer, and
L0 ∼ x means OroJaR is applied to first x layers. We found that earlier layers are more effective in deactivating the
redundant dimensions, resulting in better disentanglement. Applying OroJaR to a single intermediate layer is not sufficient
to learn a well-disentangled model, and applying OroJaR to first multiple layers helps learn a better disentangled model.


