
Supplementary Material for Paper:
Event-based Video Reconstruction Using Transformer

Wenming Weng Yueyi Zhang* Zhiwei Xiong
University of Science and Technology of China

1. Details of network architecture
Table 1 presents the details of our ET-Net architecture. Fig. 1 illustrates the details of Transformer block used in TPA.

The embedding dimension of our Transformer Blocks is 256. Eight heads are utilized for MSA/MCA. The dimension setting
for the two-layer FFN is 256-1024-256. Additionally, ReLU activation function is adopted after the first linear layer of FFN.
In order to alleviate over-fitting, we employ dropout with 0.1 after each MCA/MSA and each linear layer of FFN.

Layer Description Output size

Recurrent Convolutional Backbone (RCB)

Head
Conv2d: 5× 5× 5× 32, Stride 1, Padding 2

32×H ×W
ReLU

RB1
Conv2d: 32× 5× 5× 64, Stride 2, Padding 2

64× 1
2
H × 1

2
WReLU

ConvLSTM

RB2
Conv2d: 64× 5× 5× 128, Stride 2, Padding 2

128× 1
4
H × 1

4
WReLU

ConvLSTM

RB3
Conv2d: 128× 5× 5× 256, Stride 2, Padding 2

256× 1
8
H × 1

8
WReLU

ConvLSTM

Token Pyramid Aggregation (TPA)

TB0-3 Trans-En N + Trans-De M 1
64
HW × 256

Multi-Level Upsampler (MLU)

UB3
Interp2d: upsampling-factor 2

128× 1
4
H × 1

4
WConv2d: 256× 5× 5× 128, Stride 1, Padding 2

ReLU

UB2
Interp2d: upsampling-factor 2

64× 1
2
H × 1

2
WConv2d: 128× 5× 5× 64, Stride 1, Padding 2

ReLU

UB1
Interp2d: upsampling-factor 2

32×H ×WConv2d: 64× 5× 5× 32, Stride 1, Padding 2
ReLU

Tail
Conv2d: 32× 1× 1× 1, Stride 1, Padding 0

1×H ×W
Sigmoid

Table 1. Details of the ET-Net architecture. RB, TB and UB denote Recurrent Block, Transformer Block and Upsampling Block, respec-
tively.

*Correspondence should be addressed to zhyuey@ustc.edu.cn
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Figure 1. Details of Transformer block. Transformer encoders are responsible for modeling the internal dependency via Multi-head Self-
Attention scheme. Transformer decoders are responsible for modeling the intersected dependency via Multi-head Cross-Attention scheme.

2. Sequentialization process in TPA
Fig. 2 shows the illustrative process of sequentialization utilized in TPA. In this diagram as an example, we show features

at four scales, whose spatial sizes are 16 × 16, 8 × 8, 4 × 4 and 2 × 2 respectively. The sizes of patches at four scales are
8× 8, 4× 4, 2× 2 and 1× 1 respectively. Therefore, we can produce 4 unfold tokens for each scale in total.
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Figure 2. Illustrative process of seuquentialization utilized in TPA.



3. Stacking fashions of Transformer blocks for ET-Net variants
In the main paper, we conduct the ablation study on the aggregation scales in TPA, where we introduce four ET-Net

variants. In Fig. 3, we illustrate the stacking fashions of Transformer blocks for the four ET-Net variants. Worthy noting that
the ratio of encoder to decoder and stacking structure (square, trapezoid, funnel, etc.) are two factors to form our Transformer
blocks. In this work, we apply square staking structure, keep the same ratio and follow the protocol: if the total number is
even, we deploy equal encoder/decoder numbers, otherwise the encoder number is one more than the decoder’s.
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Figure 3. Stacking fashion of Transformer blocks.

4. Sequence cuts
In Table 2, we demonstrate cutting parameters we used for each sequence of the IJRR and MVSEC datasets respectively.

IJRR MVSEC
Sequence Start [s] End [s] Sequence Start [s] End [s]
boxes 6dof cut 5.0 20.0 indoor flying1 data cut 10.0 70.0
calibration cut 5.0 20.0 indoor flying2 data cut 10.0 70.0
dynamic 6dof cut 5.0 20.0 indoor flying3 data cut 10.0 70.0
office zigzag cut 5.0 12.0 indoor flying4 data cut 10.0 19.8
poster 6dof cut 5.0 20.0 outdoor day1 data cut 0.0 60.0
shape 6dof cut 5.0 20.0 outdoor day2 data cut 100.0 160.0
slider depth cut 1.0 2.5

Table 2. Sequence cuts for the sequences from IJRR and MVSEC.



5. Breakdown of quantitative results
Table 3 shows the breakdown of the quantitative results of our ET-Net, FireNet+ [3] and E2VID+ [3] on the HQF, IJRR

and MVSEC respectively, which are consistent with quantitative results in the main paper. No post-processing procedures
are applied for all methods.

Sequences MSE ↓ SSIM ↑ LPIPS ↓
FireNet+ E2VID+ Ours FireNet+ E2VID+ Ours FireNet+ E2VID+ Ours

HQF
bike bay hdr 0.0353 0.0362 0.0320 0.586 0.623 0.644 0.354 0.298 0.304
boxes 0.0483 0.0490 0.0403 0.550 0.579 0.603 0.309 0.264 0.246
desk 6k 0.0435 0.0282 0.0385 0.599 0.676 0.662 0.284 0.191 0.218
desk fast 0.0389 0.0321 0.0345 0.628 0.702 0.690 0.301 0.211 0.237
desk hand only 0.0650 0.0447 0.0553 0.657 0.706 0.667 0.425 0.344 0.421
desk slow 0.0849 0.0375 0.0452 0.645 0.713 0.689 0.311 0.227 0.269
engineering posters 0.0344 0.0413 0.0390 0.575 0.583 0.600 0.343 0.314 0.299
high texture plants 0.0397 0.0264 0.0224 0.561 0.607 0.619 0.182 0.163 0.151
poster pillar 1 0.0300 0.0316 0.0161 0.579 0.604 0.639 0.345 0.269 0.269
poster pillar 2 0.0596 0.0264 0.0179 0.583 0.654 0.667 0.391 0.239 0.279
reflective materials 0.0540 0.0397 0.0548 0.586 0.624 0.613 0.333 0.289 0.303
slow and fast desk 0.0374 0.0407 0.0252 0.614 0.654 0.682 0.309 0.237 0.229
slow hand 0.0478 0.0477 0.0353 0.542 0.596 0.610 0.397 0.317 0.343
still life 0.0327 0.0385 0.0321 0.620 0.611 0.622 0.282 0.247 0.270
Mean 0.0465 0.0371 0.0349 0.595 0.638 0.643 0.326 0.258 0.274

IJRR
boxes 6dof cut 0.0252 0.0389 0.0140 0.604 0.619 0.692 0.280 0.238 0.243
calibration cut 0.0248 0.0332 0.0405 0.663 0.639 0.629 0.196 0.187 0.195
dynamic 6dof cut 0.1410 0.1350 0.1327 0.317 0.298 0.303 0.384 0.352 0.336
office zigzag cut 0.0214 0.0420 0.0298 0.507 0.487 0.509 0.298 0.267 0.246
poster 6dof cut 0.0523 0.0693 0.0521 0.467 0.462 0.531 0.245 0.221 0.221
shape 6dof cut 0.0858 0.0904 0.0308 0.630 0.755 0.850 0.356 0.186 0.159
slider depth cut 0.0467 0.0465 0.0519 0.561 0.599 0.581 0.327 0.239 0.264
Mean 0.0568 0.0650 0.0503 0.535 0.551 0.585 0.298 0.241 0.237

MVSEC
indoor flying1 data cut 0.2246 0.1392 0.1232 0.257 0.345 0.341 0.551 0.522 0.473
indoor flying2 data cut 0.2325 0.1540 0.1480 0.243 0.328 0.316 0.554 0.523 0.483
indoor flying3 data cut 0.2311 0.1606 0.1250 0.253 0.327 0.344 0.551 0.529 0.461
indoor flying4 data cut 0.2613 0.1330 0.1307 0.206 0.354 0.335 0.608 0.512 0.522
outdoor day1 data cut 0.2059 0.1272 0.0714 0.285 0.273 0.355 0.622 0.571 0.548
outdoor day2 data cut 0.2117 0.0956 0.0811 0.344 0.391 0.457 0.557 0.451 0.458
Mean 0.2278 0.1350 0.1133 0.265 0.337 0.358 0.574 0.513 0.491

Table 3. Breakdown of quantitative results of our proposed ET-Net, FireNet+ and E2VID+ on the HQF, IJRR and MVSEC. Performances
on MSE(↓), SSIM(↑) and LPIPS(↓) metrics are reported for each scene. ↑ indicates that the higher value is better while ↓ indicates that the
lower value is better. The best is in bold while the second best is with underline.

Variants HQF IJRR MVSEC
MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓

ET-Net-2-s4 0.0413 0.619 0.288 0.0902 0.515 0.270 0.113 0.376 0.494
ET-Net-4-s4 0.0403 0.635 0.277 0.0522 0.587 0.236 0.118 0.355 0.491
ET-Net-6-s4 0.0430 0.623 0.286 0.0666 0.549 0.250 0.167 0.312 0.538
E2VID-res6 0.0434 0.601 0.314 0.0756 0.545 0.263 0.165 0.319 0.536
E2VID-res12 0.0388 0.610 0.290 0.0687 0.555 0.250 0.169 0.309 0.521
E2VID-res16 0.0416 0.620 0.281 0.0745 0.545 0.256 0.180 0.311 0.518
ET-Net-4-s4 0.0403 0.635 0.277 0.0522 0.587 0.236 0.118 0.355 0.491
ET-Net-5-s3 0.0408 0.629 0.273 0.0584 0.564 0.242 0.136 0.322 0.490
ET-Net-8-s2 0.0387 0.628 0.291 0.0636 0.547 0.260 0.120 0.341 0.510
ET-Net-16-s1 0.0586 0.597 0.310 0.0991 0.509 0.284 0.168 0.305 0.523

Table 4. All ablation results of our proposed ET-Net variants and E2VID variants on the HQF, IJRR and MVSEC. Performances on MSE(↓),
SSIM(↑) and LPIPS(↓) metrics are reported for each variants. ↑ indicates that the higher value is better while ↓ indicates that the lower
value is better. The best is in bold while the second best is with underline.



6. More ablation results and additional clarifications
Table 4 shows all ablation results of our proposed ET-Net variants and E2VID variants on the HQF, IJRR and MVSEC

respectively. Based on these results, we present additional clarifications and discussions.
Domain gap. As shown in Table 4, the domain gap definitely exists among HQF, IJRR and MVSEC. For example, ET-

Net-2-s4 and ET-Net-6-s4 perform worse than ET-Net-4-s4 on HQF and IJRR, while ET-Net-4-s4 perform better than the
others on MVSEC, which indicates that on HQF and MVSEC, a model with small capacity is not capable of capturing the
long range dependency from the latent CNN features, while a large model shows overfitting and degrades the generalization
ability. Due to this domain gap, furthermore our network is trained solely on the synthetic training dataset, thus we cannot
guarantee the same generalization on all real-world datasets. In the nutshell, we conclude our ablation results in the main
paper based on the results on all testing datasets, presenting the overall trend.

Best configuration. In order to search for the best configuration, we conduct experiments with the total number 2 (1
encoder + 1 decoder), 4 (2 encoders + 2 decoders), 6 (3 encoders + 3 decoders). Table 4 shows that the best performance
should be achieved near the place where the total number is 4. Then we conduct more experiments with the total number 3
(2 encoder + 1 decoder), 4 (2 encoders + 2 decoders), 5 (3 encoders + 2 decoders). We achieve the best performance when
the total number is 5 with three scales as reported in the main paper.

7. High Speed and HDR scenes
We further apply our ET-Net to the High Speed and HDR scenes. Fig. 4 demonstrates that our ET-Net performs well in

the High Speed and HDR scenes, recovering more details invisible to conventional cameras.

hdr_tunnel hdr_sun gun_bullet_mug gun_bullet_gnome

Figure 4. Visual results of our ET-Net on the sequences from High Speed and HDR datasets [1].

8. Additional qualitative results
Figs. 5, 6 and 7 show more qualitative comparisons of our ET-Net with baselines (FireNet [2], FireNet+, E2VID [1] and

E2VID+) on the sequences from MVSEC, HQF and IJRR, respectively.

9. Reconstructed video clips
The video clips reconstructed from HQF, IJRR and MVSEC datasets using ET-Net as well as other baselines (FireNet,

FireNet+, E2VID and E2VID+) are provided in the supplementary file. It should be noted that the video clips don’t contain
the full span of each sequence. Only a portion of each sequence is used to reconstruct video clips.
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Figure 5. Additional qualitative results of our ET-Net, FireNet, FireNet+, E2VID and E2VID+ on the sequences from MVSEC dataset.
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Figure 6. Additional qualitative results of our ET-Net, FireNet, FireNet+, E2VID and E2VID+ on the sequences from HQF dataset.
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Figure 7. Additional qualitative results of our ET-Net, FireNet, FireNet+, E2VID and E2VID+ on the sequences from IJRR dataset.
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