
Unsupervised Depth Completion with Calibrated Backprojection Layers
SUPPLEMENTARY MATERIALS

Alex Wong
UCLA Vision Lab
alexw@cs.ucla.edu

Stefano Soatto
UCLA Vision Lab

soatto@cs.ucla.edu

Figure 1: System diagram during training. We assume we are given monocular video sequences, synchronized sparse
point clouds projected onto the image plane as 2.5D depth maps, and camera calibration. A training sample is therefore
(It, Iτ , z,K). Sparse depth inputs (z) are fed to our sparse-to-dense module (fω) to yield a dense or quasi-dense repre-
sentation. Along with image (It) and camera calibration matrix (K), it is then fed into our depth completion network (fθ)
comprised of calibrated backprojection layers to produce dense depth prediction d̂. Relative pose (gτt) between images It
and Iτ can be estimated from a VIO or a network. In the case of the latter, pose can be jointly learned with depth. We note
that pose is only needed to give the reconstruction Îτ for constructing the loss function and is not needed during inference.

Code available at: https://github.com/alexklwong/calibrated-backprojection-network.

Summary of contents. In Sec. 1, we provide an overview
of our full system and more details on our loss function.
We also provide the kernel sizes used in our sparse-to-dense
module, augmentations used during training and our learn-
ing rate schedule to reproduce our results on KITTI [19],
VOID [23], and NYUv2 [18]. In Sec. 2, we visualize and
compare features learned by our proposed sparse-to-dense

module to those from typical convolutional block, and show
that our spare-to-dense module yields a much denser repre-
sentation for the the depth completion network to ingest. In
Sec. 3.1, we consider the possibility of miscalibration and
examine the sensitivity of our model to changes in intrin-
sics parameters i.e. incorrect calibration. We show that our
model is robust to reasonable ranges of calibration error. In

1

 https://github.com/alexklwong/calibrated-backprojection-network


Sec. 3.2, we study the sensitivity of our model to changes
in sparse depth input density levels and demonstrate that we
are robust even when sparse point cover only 0.15% of the
image space. Finally, in Sec. 5, we show that we can beat
several supervised methods on KITTI online leaderboard
and that we rank 5th amongst all methods for the iMAE
metric.

1. System Overview
Fig. 1 shows a diagram of our full system. Our model

takes an RGB image I , a sparse depth map z, and the cam-
era intrinsics matrix K as input. First, the sparse depth
map z is fed into our sparse-to-dense module fω to obtain
a dense or qusai-dense representation (Sec. 2.1, main text).
Then, the depth representation fω(z), RGB image I , and
intrinsics K are fed into the depth completion network fθ,
which is comprised of an encoder with calibrated backpro-
jection layer followed by a decoder (Sec. 2.2, main text).
Each calibrated backprojection realizes the backprojection
process into 3D camera space by performing calibrated lift-
ing of pixel coordinates using K, and projecting the depth
representation to 1 dimension and multiplying it with the
lifted coordinates – result of which is a 3D positional en-
coding of the scene structure.

To yield a unified depth and RGB representation, the 3D
positional encoding from the depth branch is passed later-
ally to the RGB branch to enable association between each
RGB feature and its 3D position. By doing so, we introduce
3D structure as an architectural inductive bias, which allows
the network to reason about “close” points in the 2D image
topology that are actually far in 3D scene topology. The
RGB 3D representation is finally fed through the decoder to
produce the final depth prediction d̂.

1.1. Loss Function

To train our model, we assume the availability of previ-
ous and next RGB frames Iτ of the given image I or It (to
denote the current time frame) where τ ∈ T .

= {t−1, t+1}.
During training, we estimate the relative pose gτt between
images at time t and τ . Using Iτ , K and gτt, we can create
the reconstruction Ît of It via reprojection (Eqn. 4, main
text) to enable an unsupervised loss (Eqn. 6-9, main text),
which include a photometric reconstruction term, a sparse
depth reconstruction term and a local smoothness term.

We note that the photometric term can be replaced with
more sophisticated measures of reprojection error [8] and
additional regularizers such as pose consistency [23] or
adaptive regularization weighting schemes [24, 22] – which
would likely boost performance even more. However, we
choose a simple loss to demonstrate the efficacy of our
novel architecture. We note that gτt can be obtained by the
means of a visual inertial odometry (VIO) system or a pose
network if the VIO is not available. In the case where pose

Epochs Learning Rate

KITTI

0 to 2 5× 10−5

2 to 8 1× 10−4

8 to 20 1.5× 10−4

20 to 30 1× 10−4

30 to 45 5× 10−5

45 to 50 2× 10−5

VOID

0 to 10 1× 10−4

10 to 15 5× 10−5

NUYv2

0 to 10 1× 10−4

10 to 15 5× 10−5

Table 1: Learning schedule for KITTI, VOID, and NYUv2.

Dataset Min Pool Max Pool

KITTI [19] 5, 7, 9, 11, 13 15, 17

VOID [23] 15, 17 23, 27, 29

NYUv2 [18] 15, 17 23, 27

Table 2: Min pool and max pool kernel sizes for our sparse-
to-dense module Kernel sizes for VOID [23] and NYUv2
[18] are larger because the point cloud generated from VIO
[6] is much sparser than that of LIDAR in KITTI [19].

is obtained from network, the pose network can be trained
jointly with our depth completion network (KBNet). Rela-
tive pose is learned as a byproduct of minimizing Eqn. 6 in
main text. Also, since gτt is only need for reprojection dur-
ing training; hence, the VIO system and the pose network
are not necessary for inference. Because our network is fast
and light-weight (16ms run time per image, 6.9M param-
eters and 2.6GB memory as benchmarked on 1216 × 352
images from KITTI [19]), it can be deployed with a VIO
system to learn online.

1.2. Implementation and Training Details

We optimized our networks using Adam [10] with β1 =
0.9 and β2 = 0.999. We trained for a total of 50 epochs
on KITTI [19], 15 epochs on VOID [23], and 15 epochs on
NYUv2 [18]. We use a batch size of 8 with 768×320 crops
for KITTI, 640× 480 for VOID and 576× 416 for NYUv2.
For KITTI, we choose wph = 1, wco = 0.15, wst = 0.95,
wsz = 0.6, and wsm = 0.04; for VOID and NYUv2, we set
wsz = 2 and wsm = 2. Kernel sizes for our sparse-to-dense
(S2D) module are shown in Table 2 for each dataset. We
detail our learning rate schedule for each dataset in Table 1.



Figure 2: Visualization of depth features. Row 3: “After Convolution Block” denotes the depth features produced by a typical
first convolutional block used by [13, 23, 26] without any form of densification. Row 4: “After Sparse-to-Dense” denotes
the depth features learned by the proposed sparse-to-dense (S2D) module. Those learned without our module are still sparse;
whereas S2D produces a dense or quasi-dense representation before it reaches the depth completion network. This alleviates
the network from having to densify or propagate the sparse signal, making the overall architecture more efficient.

For data augmentations on KITTI, we performed random
horizontal shifts to the image and depth map and randomly
removed between 60% to 70% of the sparse points. For
VOID and NYUv2, we randomly removed 30% to 60% of
the sparse points. Augmentations are enabled 100% of the
time throughout training and each augmentation has a 50%
probability of being applied.

2. Features Learned by Sparse-to-Dense

In Sec 2.1 of the main text, we proposed a sparse-to-
dense module (S2D) to learn a dense or quasi-dense repre-
sentation of the sparse depth inputs. S2D utilizes a series of
min and max pooling layers of various kernel sizes to den-
sify the sparse depth inputs (for a list of kernel sizes used
for each dataset, please see Table 2). To balance the trade-
off between density and detail (large vs. small kernel sizes),
and near and far structures (min vs. max pooling), we con-
catenate the pooled results and learn three 1 × 1 convolu-
tions. The output of which is fused with the input sparse
depth using a 3× 3 convolution to “fill in the gaps”.

Fig. 2 shows visualizations of features learned by S2D
and a comparison to the features learned by typical convo-
lutional e.g. ResNet or VGG blocks used by [13, 23, 26].
Row 2 of Fig. 2 shows that despite passing through sev-
eral convolutional layers (≈ 10Kto20K parameters), the
representation obtained by a typical convolution block is
still sparse; so the later layers will still have many zero-
activations and must continue to densify the features. In
contrast, using our proposed S2D (≈ 900 parameters), the
depth representation learned is dense or quasi-dense before

reaching the depth completion network (row 3). This en-
ables non-zero activations in the later layers, which allows
the network to use its early convolutions for learning scene
geometry rather than densification.

We note that our sparse-to-dense module may bare some
resemblance to Spatial Pyramid Pooling (SPP) employed in
classification [9] or stereo matching [1]. However, we note
that [9] used SPP with max pooling to ensure that feature
map sizes are consistent for different input sizes. [1] used
average pooling to increase receptive field. Both use cases
are intended for dense input. We discussed the drawbacks
of max pooling [9] in Sec. 2.1 of the main text and showed
in Table 3 of main text that SPP underperforms compare to
our S2DM. Also we note that using average pooling [1] will
destroy the signal because the kernel will convolve and av-
erage over mostly zeros. The work that is most similar to
our S2D module is the SPP for depth completion proposed
by [21]. However, [21] only uses max pooling which deci-
mates the detail of nearby structures.

3. Sensitivity Studies
In this section, we provide additional studies to quantify

the sensitivity of our model to incorrect calibration and var-
ious sparse depth density levels.

3.1. To Incorrect Calibration

We showed in Table 5 of the main text that our method
generalizes well when given the correct calibration at test
time. To consider the scenario of a miscalibrated camera,
we studied the sensitivity of our model to incorrect calibra-



Figure 3: Visualization of predicted depth for incorrect calibration. -25% K denotes 25% decrease to intrinsics parameters
and +25% K denotes 25% increase. Overall error in -25% is increased (slight brigher shade of red). Larger errors caused
by incorrect intrinsics is generally located at the edge of the depth map. +25% have little effect on our predictions. This is
because decreasing focal length causes surfaces to be distorted, which in turn affect depth predictions. On the other hand,
increasing focal length packs points closer together, which is less detrimental in comparison.

Figure 4: Sensitivity to changes in calibration on KITTI.
Focal length and principal point are altered to test sensitivity
to changes in intrinsics parameters. Our method is robust to
change up to ≈ 10% change. After which, performance
degrades. We note that changes in principal point (cx, cy)
have little effect; whereas decreasing focal length (f ) causes
large drop in performance.

tion on the KITTI dataset (outdoor scenarios) in Fig. 5 in
the main text (also here in Fig. 4). Now, we further extend
the sensitivity study to the indoor setting by conducting a
similar sensitivity study on the VOID dataset (Fig. 5). To
this end, we consider changes to the focal length (f ) and
principal point (cx, cy) parameters to create erroneous in-
trinsic calibration matrices for input to a pretrained model
on VOID.

The overall trend for indoor setting, (VOID, Fig. 5) is
similar to that of outdoor setting (KITTI, Fig. 4). For both
indoors and outdoors, our model is robust to changes in
principal point parameters (cx, cy) – increasing or decreas-
ing them by up to 25% has little effect on performance.
This is because these parameters shifts the optical center

Figure 5: Sensitivity to changes in calibration on VOID.
Focal length and principal point are altered to test sensitivity
to changes in intrinsics parameters. Our method is robust to
change up to ≈ 10% change. After which, performance
degrades. We note that changes in principal point (cx, cy)
have little effect; whereas decreasing focal length (f ) causes
large drop in performance.

so they do not affect the overall structure of the scene. We
note that for large values outside of reasonable perturbation
range will cause the performance to decrease.

Unlike its behavior with changes in the principal point,
the model degrades when focal length (f ) is decreased. For
both indoors and outdoors, we are robust up to 10% de-
crease in focal length, after which error will increase. We
note that the performance drop is asymmetric, our model is
robust to increases in focal length up to 20%. The reason
for this phenomeon is as follows: Geometrically, decreases
in focal length will cause points to backproject to a wider
field of view, which distorts surfaces by pushing points that
belong to the same surface far from each other. On the
other hand, increases in focal length will cause points to



Figure 6: Visualization of predicted depth for various density levels on VOID. Columns 1, 2: Our method works well for
density levels of 0.5% and 0.15%. Column 3: The quality of predicted depth begins to degrade in far homogeneous regions
where there are no sparse points e.g. wall when density level drops to 0.05%.

pack tighter together. This does not disrupt the scene struc-
ture for small values, but for large values, points will get
squashed together; this is demonstrated by the small uptick
in error when increasing focal length by 20 to 25%.

We note that these values are well out of the typical range
of calibration error and should not be of concern. For exam-
ple when using off-the-shelf calibration packages that im-
plements [27] to calibrate our camera, we obtained a stan-
dard error of ≈ 0.6%, which yields ± ≈ 1.1% margin of
error for a 95% confidence interval. Nonetheless, there ex-
ists the risk of using the wrong calibration; however, we
believe this trade-off is well worth the performance boost
provided by the proposed architecture.

Fig. 3 shows a visualization of depth predicted by our
model when using erroneous calibration. -25%K denotes a
25% decrease to focal length and principal point and +25%
K denotes a 25% increase to both. As we can see, the larger
errors are typically located along the border of the predicted
depth map; there is also a slight increase in error (brighter
shade of red) for the entire scene. Increasing intrinsics by
25% affects the output less significantly, but nonetheless we
observe an increase in errors.

3.2. To Various Density Levels

In Table 3, we consider three different levels of den-
sity for the sparse depth inputs, 0.50%, 0.15%, 0.05% of
the image space, that are provided by the VOID dataset
[23]. To this end, we train a single model on VOID us-

Method MAE RMSE iMAE iRMSE

0.50% Density

VOICED [23] 85.05 169.79 48.92 104.02

ScaffNet [21] 59.53 119.14 35.72 68.36

Ours 39.80 95.86 21.16 49.72

0.15% Density

VOICED [23] 124.11 217.43 66.95 121.23

ScaffNet [21] 108.44 195.82 57.52 103.33

Ours 77.70 172.49 38.87 85.59

0.05% Density

VOICED [23] 179.66 281.09 95.27 151.66

ScaffNet [21] 150.65 255.08 80.79 133.33

Ours 131.54 263.54 66.84 128.29

Table 3: Sensitivity study on various sparse depth den-
sity levels on VOID. We train a single model on VOID us-
ing sparse depth maps of 0.50% density and evaluate it on
0.50%, 0.15%, 0.05% density test sets. As expected, perfor-
mance degrade as the input become more sparse. Overall,
we perform better than [21, 23]; however, at 0.05%, [21]
performs better on the RMSE metric.

ing sparse depth maps of 0.50% density and evaluate it on
0.50%, 0.15%, 0.05% density test sets. We also compare
our method against [21, 23] under these density levels.

As expected, as density decreases, our performance also



Figure 7: Qualitative results on generalization. We trained our model on VOID [23] (captured by Intel RealSense) and
tested the model on NYUv2 [18] (captured by Microsoft Kinect). We also trained the baseline [23] on VOID and tested it on
NYUv2. Here we show the point clouds in 3D and colored. Because of the mismatch in cameras, [23] predicted a distorted
scene; whereas, while ours is not perfect, it is reasonable.

degrades. However, we still outperform both [21, 23] un-
der all three levels. We note that at the sparsest setting of
0.05%, [21] does beat us on the RMSE metric. The reason
for this is that we selected the kernel sizes for our model
based on the sparsity level of 0.5%; therefore, when testing
it on 10× sparser point cloud, our depth representation will
be more sparse as well, which limits the potential of our
calibrated backprojection layers. In contrast, [21] proposed
a network to first estimate the dense coarse topology. This
phenomenon is also observed in KITTI, shown in Table 3 of
the main text, where we removed our sparse-to-dense mod-
ule and we observed a significant drop in performance.

Fig. 6 shows qualitative evaluations on the three density
levels. For 0.50%, error is low overall and the shape of the
recovered scene resembles that of the ground truth. When
we decrease density to 0.15%, we observe slight blurring
in object shapes and increased errors in homogeneous re-
gions. At 0.05%, we begin to observe artifact such as the
green “blob” corresponding to the wall with more exagger-
ated errors in homogeneous regions. This is because locally
the textureless surfaces give little to no information on ob-
ject shape. Without sparse depth to anchor their values, they
can be arbitrary. In this case the “empty” region is predicted
as far.

4. Generalization to Other Sensor Platforms
In Sec. 3.4 of the main text, we discussed our ability to

generalize to other sensor platforms that may use a different
test time camera than one used to collect training data. In
Table 5 of the main text, we showed quantitatively that we
generalize better than the baseline. Here, we demonstrate
this qualitatively in Fig. 7.

To this end, we trained our model on VOID [23] (cap-
tured by Intel RealSense) and tested the model on NYUv2
[18] (captured by Microsoft Kinect). We similarly trained
the baseline [23] on VOID and tested it on NYUv2. Fig. 7
shows the predicted depth, backprojected to the point clouds
in 3D and colored. As we can see, [23] predicted a distorted

scene; in contrast, ours is not perfect, but reasonable. This
demonstrates the benefit of taking calibration as input. It
allows the model to generalize well when it is deployed to
a sensor platform where the camera that is used is different
than the one used for training. We also note that neither
models have been trained on NYUv2 which features a dif-
ferent scene distribution than that of VOID.

5. KITTI Depth Completion Benchmark

In Sec. 3.3 of the main text, we compare our method
against unsupervised methods on the KITTI online leader-
board. Here, we show quantitative comparisons against
both supervised (Table 4) and unsupervised (Table 5) meth-
ods. Results and method names are directly taken from the
KITTI online leaderboard. Here we refer to our method as
KNBet, as listed on the leaderboard. We note that SS-S2D
[13] and DDP [26] compete in both supervised and unsuper-
vised benchmarks. Additionally, we provide high resolution
examples of our output in Fig. 8.

Despite being trained without ground-truth annotations,
Table 4 shows that our method is competitive even amongst
supervised method. We outperform some supervised meth-
ods [4, 5] across most metrics. Our iMAE score, which
penalizes mean error in close range regions, is ranked 5th
overall amongst both supervised and unsupervised meth-
ods. We note that supervised methods are generally more
computationally expensive with high model complexity e.g.
in terms of number of parameters, [14] uses 25.84M, [15]
53.4M, and [25] 28.99M; whereas we only use 6.9M.

Compared to unsupervised methods (Table 5), we rank
first amongst all methods with the best scores across all
metrics. Our model even beat methods [12, 26, 21] that
use additional synthetic data (Virtual KITTI [7]) for train-
ing, amongst which is the state of the art [21]. Despite this,
we beat [21] by an average of 8% across all metrics while
using 11.5% fewer parameters. These results demonstrates
the potential of our method to bridge the gap between super-



Figure 8: Qualitative results on KITTI depth completion benchmark.

Method MAE RMSE iMAE iRMSE

ADNN [4] 439.48 1325.37 3.19 59.39

Morph-Net [5] 310.49 1045.45 1.57 3.84

KBNet (Ours) 258.36 1068.07 1.03 3.01

SS-S2D [13] 249.95 814.73 1.21 2.80

DeepLiDAR [15] 226.50 758.38 1.15 2.56

PwP [25] 235.73 785.57 1.07 2.52

UberATG-FuseNet [2] 221.19 752.88 1.14 2.34

RGB guide&certainty [20] 215.02 772.87 0.93 2.19

DDP [26] 203.96 832.94 0.85 2.10

CSPN++ [3] 209.28 743.69 0.90 2.07

NLSPN [14] 199.59 741.68 0.84 1.99

Table 4: KITTI supervised depth completion benchmark.
Results are directly taken from online leaderboard. Note:
SS-S2D [13] and DDP [26] compete in both supervised
and unsupervised benchmarks. Our results are italicized.
Despite being an unsupervised method, our method beats
some supervised methods [4, 5] and our iMAE score (1.03)
is ranked 5th amongst supervised methods.

vised and unsupervised method. Moreover, our network is
light-weight and can be deployed on VIO system [6]. While
there is still a long road ahead, these results show a lot of

Method MAE RMSE iMAE iRMSE

SGDU [16] 605.47 2312.57 2.05 7.38

SS-S2D [13] 350.32 1299.85 1.57 4.07

IP-Basic [11] 302.60 1288.46 1.29 3.78

DFuseNet [17] 429.93 1206.66 1.79 3.62

DDP* [26] 343.46 1263.19 1.32 3.58

VOICED [23] 299.41 1169.97 1.20 3.56

AdaFrame [22] 291.62 1125.67 1.16 3.32

SynthProj* [12] 280.42 1095.26 1.19 3.53

ScaffNet* [21] 280.76 1121.93 1.15 3.30

KBNet (Ours) 258.36 1068.07 1.03 3.01

Table 5: KITTI unsupervised depth completion benchmark.
Results are directly taken from online leaderboard. Note:
SS-S2D [13] and DDP [26] compete in both supervised
and unsupervised benchmarks. Our method outperforms
is trained only on KITTI, but still the state of the art [21]
(trained on KITTI and Virtual KITTI [7]) by an average of
8% across all metrics. * denotes methods that use additional
synthetic data for training.

promise in enabling unsupervised methods to learn online
and to be used for real-time application for low-cost hard-
ware systems.



References
[1] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5410–
5418, 2018. 3

[2] Yun Chen, Bin Yang, Ming Liang, and Raquel Urtasun.
Learning joint 2d-3d representations for depth completion.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 10023–10032, 2019. 7

[3] Xinjing Cheng, Peng Wang, Chenye Guan, and Ruigang
Yang. Cspn++: Learning context and resource aware convo-
lutional spatial propagation networks for depth completion.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 10615–10622, 2020. 7

[4] Nathaniel Chodosh, Chaoyang Wang, and Simon Lucey.
Deep convolutional compressed sensing for lidar depth com-
pletion. In Asian Conference on Computer Vision, pages
499–513. Springer, 2018. 6, 7

[5] Martin Dimitrievski, Peter Veelaert, and Wilfried Philips.
Learning morphological operators for depth completion. In
International Conference on Advanced Concepts for Intelli-
gent Vision Systems, pages 450–461. Springer, 2018. 6, 7

[6] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-
supervised visual depth prediction. IEEE Robotics and Au-
tomation Letters, 4(2):1661–1668, 2019. 2, 7

[7] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4340–4349, 2016. 6, 7

[8] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019. 2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE transactions on pattern analysis
and machine intelligence, 37(9):1904–1916, 2015. 3

[10] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for
stochastic gradient descent. In ICLR: International Confer-
ence on Learning Representations, pages 1–15, 2015. 2

[11] Jason Ku, Ali Harakeh, and Steven L Waslander. In defense
of classical image processing: Fast depth completion on the
cpu. In 2018 15th Conference on Computer and Robot Vision
(CRV), pages 16–22. IEEE, 2018. 7

[12] Adrian Lopez-Rodriguez, Benjamin Busam, and Krystian
Mikolajczyk. Project to adapt: Domain adaptation for depth
completion from noisy and sparse sensor data. In Proceed-
ings of the Asian Conference on Computer Vision, 2020. 6,
7

[13] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac
Karaman. Self-supervised sparse-to-dense: Self-supervised
depth completion from lidar and monocular camera. In In-
ternational Conference on Robotics and Automation (ICRA),
pages 3288–3295. IEEE, 2019. 3, 6, 7

[14] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and
In-So Kweon. Non-local spatial propagation network for

depth completion. In European Conference on Computer
Vision, ECCV 2020. European Conference on Computer Vi-
sion, 2020. 6, 7

[15] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,
Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deepli-
dar: Deep surface normal guided depth prediction for out-
door scene from sparse lidar data and single color image.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3313–3322, 2019. 6, 7

[16] Nick Schneider, Lukas Schneider, Peter Pinggera, Uwe
Franke, Marc Pollefeys, and Christoph Stiller. Semantically
guided depth upsampling. In German conference on pattern
recognition, pages 37–48. Springer, 2016. 7

[17] Shreyas S Shivakumar, Ty Nguyen, Ian D Miller, Steven W
Chen, Vijay Kumar, and Camillo J Taylor. Dfusenet: Deep
fusion of rgb and sparse depth information for image guided
dense depth completion. In 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), pages 13–20. IEEE,
2019. 7

[18] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012. 1, 2, 6

[19] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In 2017 International Conference on 3D Vision (3DV), pages
11–20. IEEE, 2017. 1, 2

[20] Wouter Van Gansbeke, Davy Neven, Bert De Brabandere,
and Luc Van Gool. Sparse and noisy lidar completion with
rgb guidance and uncertainty. In 2019 16th International
Conference on Machine Vision Applications (MVA), pages
1–6. IEEE, 2019. 7

[21] Alex Wong, Safa Cicek, and Stefano Soatto. Learning topol-
ogy from synthetic data for unsupervised depth comple-
tion. IEEE Robotics and Automation Letters, 6(2):1495–
1502, 2021. 3, 5, 6, 7

[22] Alex Wong, Xiaohan Fei, Byung-Woo Hong, and Stefano
Soatto. An adaptive framework for learning unsupervised
depth completion. IEEE Robotics and Automation Letters,
6(2):3120–3127, 2021. 2, 7

[23] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano
Soatto. Unsupervised depth completion from visual inertial
odometry. IEEE Robotics and Automation Letters, 2020. 1,
2, 3, 5, 6, 7

[24] Alex Wong and Stefano Soatto. Bilateral cyclic con-
straint and adaptive regularization for unsupervised monoc-
ular depth prediction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5644–5653, 2019. 2

[25] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun
Bao, and Hongsheng Li. Depth completion from sparse lidar
data with depth-normal constraints. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2811–2820, 2019. 6, 7

[26] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth
posterior (ddp) from single image and sparse range. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3353–3362, 2019. 3, 6, 7



[27] Zhengyou Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and machine
intelligence, 22(11):1330–1334, 2000. 5


