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1. HoliCity-Overhead Dataset

We introduced the HoliCity-Overhead dataset, an exten-
sion of the the HoliCity [1] dataset that includes overhead
imagery and height data. Figure 1 visualizes the coverage
of the original dataset in downtown London, UK. Figure 2
shows example overhead images and aligned height map
pairs (each image of size 512 x 512) at the different zoom
levels we collected (i.e., varying ground sample distance or
ground resolution).

2. Extended Results

We present additional evaluation of our methods using
the HoliCity-Overhead dataset.

2.1. Height Estimation

Table 1 shows results for height estimation, generated
using our method (Section 4 of the main paper). For this ex-
periment we used the zoom level 17 imagery, which equates
to a ground sample distance of approximately .74 meters
per pixel over London. Though height estimation is only
an intermediate task of our network and not the primary ob-
jective, our approach achieves good performance in several
metrics. Figure 3 shows example height maps generated us-
ing our approach alongside the ground truth, with yellow
indicating larger values.

Table 1: Height estimation results on HoliCity-Overhead.

MAE RMSE RMSE log
ours (heightest.) 3.333  5.225 0.470

2.2. Scale Factor Analysis

Though our method requires no computation of a scal-
ing factor at inference, we can analyze the performance of
our method in terms of scale. Figure 4 shows a scatter plot
(per image) where the x-axis is median depth from ground-
truth and the y-axis is median depth from prediction. Note
that in median scaling, the scaling factor is estimated as the
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Figure 1: Visualizing the coverage of the HoliCity [I]
dataset. The locations of the ground-level panoramas are
shown as blue dots (subsampled).
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Figure 2: Example data from the HoliCity-Overhead dataset
at different zoom levels (i.e., varying ground sample dis-
tance). (top) Overhead image and (bottom) height map from
composite digital surface model.
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Figure 3: Example height maps generated by our approach where yellow represents larger values.

60

50 A

40 -

301

201

Median Depth Prediction (meters)

104

ground
e ours

0 10 20 30 40 50 60
Median Depth Label (meters)

Figure 4: Visualizing median depth of ground-truth versus
median depth of prediction (the ratio of which is the scale
factor for median scaling) for our method versus a baseline.
Each dot corresponds to an image in the HoliCity-Overhead
evaluation set. Our method is generally closer to the diago-
nal, indicating better performance.

ratio of these two quantities. For this visualization, points
closer to the diagonal indicate better alignment in scale. As
observed, our approach is generally closer to the diagonal
when compared against the ground-only baseline.

2.3. Impact of Ground Sample Distance

As shown in Section 5.2 of the main paper, starting from
an overhead height map with larger ground sample dis-
tance leads to better performance when integrating geospa-
tial context. This makes sense because a larger ground sam-
ple distance, but same size image, has greater spatial cover-
age. Here we visualize the impact of this on the generated
synthetic depth panoramas. For this experiment, we use
the ground-truth height map data contained in the HoliCity-
Overhead dataset. Figure 5 visualizes the results. As ob-
served, synthetic depth panoramas generated from zoom
level 16 data (approx. 1.5 meters per pixel) contain objects,
such as buildings, that are farther away than in zoom level
18 (approx. .4 meters per pixel).

2.4. Qualitative Results

Finally, in Figure 6 we show results generated by our
method alongside results from the ground-only baseline. As
observed, our approach that integrates geospatial context is
better able to capture the scale of the scene. For example, in
the first row, the ground-only baseline significantly under-
estimates the maximum depth along the road compared to
our approach.
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Figure 5: Visualizing the impact of ground sample distance. Starting from lower zoom levels (higher ground sample distance)
increases spatial coverage, enabling capture of objects farther away in the synthetic depth panoramas. Yellow (black) values

indicate smaller (larger) depths.

3. Application: Estimating Geo-Orientation

We show that our intermediate representation of scale
(in the form of a synthetic depth panorama) can be used
for a variety of applications, including orientation estima-
tion. For this experiment, we use the overhead height map
at zoom level 16. Given a query ground-level depth map
with known geolocation but unknown orientation, we first
generate the synthetic depth panorama from a co-located
height map using our approach. We then perform a grid
search over yaw/pitch parameters at one degree intervals,
extracting the corresponding perspective depth cutout, and
comparing to the query depth image. Each orientation is
assigned a score using mean absolute error between the
two depth maps, selecting the lowest error configuration as
our prediction. Example registration results are shown in
Figure 7. The ground-truth perspective cutout boundary is
shown in blue and the result of our registration technique is
shown in red. Despite this simple approach, the estimated

orientations are quite accurate.
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Figure 6: Qualitative results of our method compared to the ground-only baseline. Our approach, which integrates geospatial
context, better captures the scale of the scene. Yellow (black) values indicate smaller (larger) depths.



Figure 7: Example results from orientation estimation. The perspective image boundary corresponding to the true orientation
is shown in blue and our registration result is shown in red.



