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1. The Setting of Hyper Parameters
In this work, we introduce four kinds of loss functions

to compute the losses when our proposed method is trained
under the supervised stage and semi-supervised stage, in-
cluding Ldice for calculating the segmentation loss, Lsemi

for calculating the divergence between the confidence maps
from two kinds of segmentation networks, Ladv for train-
ing the first discriminator to produce confidence maps with
high quality and L′

adv for training the second discriminator
to distinguish the segmentation results. Among these loss
functions, Tsemi is a hyper parameter set as the threshold
to control the sensitivity of the self-taught process (signal
maps). In the training process of our proposed method, we
found that the adjustment results of Tsemi was similar to the
analysis of Hung’s. Besides, λadv , λ′

adv and λsemi are set
to balance the primary adversarial training with labeled and
unlabeled data. Furthermore, λD2

and λ′
D2

are two hyper
parameters set to balance the auxiliary discriminator train-
ing according to the amount of labeled and unlabeled data.
The complete hyper parameters analysis can be seen in Ta-
ble 1 and Table 2.

As shown in Table 3, our proposed method trained with
fully labeled polyp images can achieve comparable segmen-
tation results to PraNet [2] and HarDNet-MSEG [3].

2. More Experiments Results of Different La-
beled Amount

To further explore the effectiveness of our proposed
semi-supervised method for polyp segmentation, we evalu-
ate the proposed method on the Kvasir-SEG [4] dataset and
CVC-Clinic DB [1] with more different labeled amount set-
tings. Statistical comparisons are as shown in Table 3.

3. More Comparison with Other Semi-
supervised Methods

We also compare our proposed method with other semi-
supervised methods, including TCSM v1 [5], TCSM v2 [6]
and UA-MT [7]. Specially, the latter two semi-supervised

Table 1. Hyper parameter analysis for the primary adversarial
learning on Kvasir-SEG dataset. Note that λD2 and λ′

D2
, which

are the hyper parameters in auxiliary adversarial training, are set
to the same as 0.01 and 0.05 respectively.

Table 2. Hyper parameter analysis for the auxiliary adversarial
learning on Kvasir-SEG dataset. The setting of hyper parameters
for primary adversarial training are the same.

methods apply the method of mean teacher, which has
brought improvement to TCSM v1. For UA-MT, the pro-
posed mechanism of uncertainty estimation can improve
the credibility of predicted target generated by the teacher
model to a certain extent. However, these methods are de-
voted to improve the reliability of teacher model, ignoring
the effective extraction of edge information. The relative
experimental results are shown in Table 4.



Figure 1. More comparisons with different State-of-the-art methods on the Kvasir-SEG dataset and CVC-Clinic DB. (a) Input image. (b)
Ground Truth. (c) ResU-Net. (d) U-Net++. (e) CE-Net. (f) CPF-Net. (g) PraNet. (h) HarDNet-MSEG. (i) Hung’s. (j)Ours. Note that,
Hung’s method and our semi-supervised polyp segmentation method are trained with only 30% of labeled data. Red, green and yellow
regions represent the ground truth, prediction and their overlapping regions respectively.

Table 3. Statistical comparison of different labeled amount on the
Kvasir-SEG dataset and the CVC-Clinic DB.

4. More Visual Comparison Results
More visual polyp segmentation results on the Kvasir-

SEG [4] dataset and CVC-Clinic DB [1] are presented in
Figure 1.
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