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A. CAD dataset

We create our dataset by parsing the command sequences
of CAD models in Onshape’s online repository. Some ex-
ample models from our dataset are shown in Fig. 9. Unlike
other 3D shape datasets which have specific categories (such
as chairs and cars), this dataset are mostly user-created me-
chanical parts, and they have diverse shapes.

Our dataset is derived from the ABC dataset [23], which
contains several duplicate shapes. So for each shape in the
test set, we find its nearest neighbor in the training set based
on chamfer distance; we discard this test shape if the nearest
distance is below a threshold.

We further examine the data distribution in terms of CAD
command sequence length and the number of extrusions
(see Fig. 8). Most CAD command sequences are no longer
than 40 or use less than 8 extrusions, as these CAD mod-
els are all manually created by the user. A similar com-
mand length distribution is also reported in Fusion 360
Gallery [48].
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Figure 8. Statistics of CAD training data in terms of command
sequence length (left) and number of extrusions (right).
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B. Command Parameter Representation

Recall that our list of the full command parameters is
pi = [z,y,0, f,7,0,0,7, Dz, Py, Pz, S, €1,€2,b,u] in Ta-
ble 1. As described in Sec. 3.1.2, we normalize and quantize
these parameters.

First, we scale every CAD model within a 2 X 2 X 2 cube

(without translation) such that all parameters stay bounded:
the sketch plane origin (p,, py, p-) and the two-side extru-
sion distances (eg, e) range in [—1, 1]; the scale of associ-
ated sketch profile s is within [0, 2]; and the sketch orienta-
tion (0, ¢, ) have the range [—, 7).

Next, we normalize every sketch profile into a unit square
such that its starting point (i.e., the bottom-left point) locates
at the center (0.5, 0.5). As a result, the curve’s ending posi-
tion (x, y) and the radius r of a circle stay within [0, 1]. The
arc’s sweeping angle « by definition is in [0, 27].

Afterwards, we quantize all continuous parameters into
256 levels and express them using 8-bit integers.

For discrete parameters, we directly use their values. The
arc’s counter-clockwise flag f is a binary sign: 0 indicates
clockwise arc and 1 indicates counter-clockwise arc. The
CSG operation type b € {0, 1,2, 3} indicates new body, join,
cut and intersect, respectively. Lastly, the extrusion type
u € {0, 1,2} indicates one-sided, symmetric and two-sided,
respectively.

C. Network Architecture and Training Details

Autoencoder. Our Transformer-based encoder and de-
coder are both composed of four layers of Transformer
blocks, each with eight attention heads and a feed-forward
dimension of 512. We adopt standard layer normalization
and a dropout rate of 0.1 for each Transformer block.

The last Transformer block in the decoder is followed by
two separate linear layers, one for predicting command type
(with weights W; € R256%6) and another for predicting
command parameters (with weights TV, € R256%4096) The
output, a 4096-dimensional vector, from the second linear
layer is further reshaped into a matrix of shape 16 x 256,
which indicates each of the total 16 parameters.

Latent-GAN. Section 3.4 describes the use of latent-GAN
technique on our learned latent space for CAD generation.
In our GAN model, the generator and discriminator are both
MLP networks, each with four hidden layers. Every hidden
layer has a dimension of 512. The input dimension (or the
noise dimension) is 64, and the output dimension is 256.
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Figure 9. Our CAD dataset. Top two rows: examples of CAD models in our dataset. Bottom two rows: examples of CAD construction

sequences.

We use WGAN-gp strategy [7, 18] to train the network:
the number of critic iterations is set to 5 and the weight
factor for gradient penalty is set to 10. The training lasts for
200, 000 iterations with a batch size of 256. In this process,
Adam optimizer is used with a learning rate of 2 x 10~ and
£1 =0.5.

D. Autoencoding CAD models

Comparison methods. Here we describe in details the
variants of our method used in Sec. 4.1 for comparison.
Alt-Rel represents curve positions relative to the position
of its previous curve in the loop. As a result, the ending
positions of a line and a arc and the center of a circle differ
from those in our method, but the representation of other
curve parameters (i.e., , f, r in Table 1) stays the same.
Alt-Trans includes in the extrusion command the start-
ing position (s, s,) of the loop, in addition to the origin
of the sketch plane. The origin (p,, py,p-) is in the world
frame of reference; the loop’s starting position (s, sy) is
described in the local frame of the sketch plane. In our pro-
posed approach, however, we translate the sketch plane’s
origin to the loop’s starting position. Thereby, there is no
need to specify the parameters (s, s,) explicitly.
Alt-ArcMid specifies an arc using its ending and middle
positions. As a result, the representation of an arc becomes
into (x,y, my, my), where (x,y) indicates the ending posi-
tion (as in our method), but (m,,, m,,) is used to indicate the
arc’s middle point.
Alt-Regr regresses all parameters of the CAD com-
mands using the standard mean-squared error in the loss
function. The Cross-Entropy loss for discrete parameters

(such as command types) stays the same as our proposed
approach. But in this variant, continuous parameters are
not quantized, although they are still normalized into the
range [—1,1] in order to balance the mean-squared errors
introduced by different parameters.

Ours+Aug includes randomly composed CAD command
sequences in its training process. This is a way of data aug-
mentation. When we randomly choose a CAD model from
the dataset during training, there is 50% chance that the sam-
pled CAD sequence will be mixed with another randomly
sampled CAD sequence. The mixture of the two CAD com-
mand sequences is done by randomly switching one or more
pairs of sketch and extrusion (in their commands). CAD
sequences that contain only one pair of sketch and extrusion
are not involved in this process.

Full statistics for CD scores. In Table 4, we report the
mean, trimmed mean, and median chamfer distance (CD)
scores for our CAD autoencoding study. “Trimmed mean”

mean trimmed mean median

Method cD cD cD

Ours+Aug 6.14 0.974 0.752
Qurs 7.16 1.08 0.787
Alt-ArcMid  6.90 1.09 0.790
Alt-Trans 7.14 1.09 0.792
Alt-Rel 9.24 1.38 0.863
Alt-Regr 12.61 3.87 2.14

Table 4. Mean, trimmed mean and median chamfer distances for
shape autoencoding. Numerical values are multiplied by 10°.



Figure 10. Shape autoencoding results on Fusion 360 Gallery [48]
test data. The autoencoder is trained using our own dataset.

median Invalid
ACCemg T ACCparam T CD \L Ratio J/
97.90 96.45 0.796 1.62

Table 5. Quantitative evaluation for shape autoencoding on Fu-
sion 360 Gallery [48] test data. The model is only trained on our
proposed dataset. 1: the higher the better, |: the lower the better.

CD is computed by removing 10% largest and 10% smallest
scores. The mean CD scores are significantly higher than the
trimmed mean and median CD scores. This is because the
prediction of CAD sequence in some cases may be sensitive
to small perturbations: a small change in command sequence
may lead to a large change of shape topology and may even
invalidate the topology (e.g., the gray shape in Fig. 11).
Those cases happen rarely, but when they happen, the CD
scores become significantly large. It is those outliers that
make the mean CD scores much higher.

Accuracies of individual parameter types. We also ex-
amine the accuracies for individual types of parameters. The
accuracy is defined in Sec. 4.1, and the results are shown
in Fig. 13. While all the parameter are treated equally in the
loss function, their accuracies have some differences. Most
notably, the recovery of arc’s sweeping angle « has lower
accuracy than other parameters. By examining the dataset,
we find that the values of sweeping angle « span over its
value range (i.e., [0, 27r]) more evenly than other parameters,
but the arc command is much less frequently used than other
commands. Thus, in comparison to other parameters, it is
harder to learn the recovery of the arc sweeping angle.

E. Generalization on Fusion 360 Gallery [45]

To validate the generalization ability of our autoencoder,
we perform a cross-dataset test. In particular, for shape au-
toencoding tasks, we take the model trained on our proposed

Figure 11. Failure examples in shape autoencoding. Top: our
reconstructed CAD outputs. Bottom: ground-truth CAD models.
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Figure 12. Quantitative metrics for shape autoencoding w.r.t. CAD
sequence length. Left: median chamfer distance (the lower the

better). Right: parameter accuracy (the higher the better).
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Figure 13. Accuracies for individual parameter types.

median  Invalid
Method ACCcmg T ACCraram T Dy Ratio
Ours 85.95 74.22 10.30 12.08
Ours-noise 84.65 74.23 10.44 13.82

Table 6. Quantitative results for CAD reconstruction from point
clouds. Ours-noise corresponds to noisy inputs (uniform noise in
[—0.02, 0.02] along normal direction). We use the same metrics as
in autoencoding task; ACCcmg and ACCparam are both multiplied by
100%, and CD is multiplied by 103.

dataset and evaluate it using a different dataset provided by
Fusion 360 Gallery [48]. These two datasets are constructed
from different sources: ours is based on models from On-
shape repository, whereas theirs is created from designs in
Autodesk Fusion 360. The qualitative and quantitative re-
sults are shown in Fig. 10 and Table 5, respectively, showing
that our trained model performs well on shape distributions



Figure 14. A gallery of our generated CAD models.

that are different from the training dataset.

F. Failure Cases

Not every CAD command sequence is valid. Our method
is more likely to produce invalid CAD commands when
the command length becomes long. Figure 11 shows a few
failed results. The produced gray shape has invalid topol-
ogy, and the yellow shape suffers from misplacement of
small sketches. Figure 12 plots the median CD scores and
the parameter accuracies with respect to CAD command se-
quence length. The difficulties for generating long-sequence
CAD models are twofold. As the CAD sequence becomes
longer, it is harder to ensure valid topology. Meanwhile, as
shown in Fig. 8, the data distribution in terms of the sequence
length has a long tail; the dataset provides much more short
sequences than long sequences. This data imbalance may
cause the network model to bias toward short sequences.

G. Metrics for Shape Generation

We follow the three metrics used in [6] to evaluate the
quality of our shape generation. In [0], these metrics are
motivated for evaluating the point-cloud generation. There-
fore, for computing these metrics for CAD models, we first
convert them into point clouds. Then, these metrics are de-
fined by comparing a set of reference shapes S with a set of
generated shapes G.

Coverage (COV) measures the diversity of generated
shapes by computing the fraction of shapes in the reference
set S that are matched by at least one shape in the generated
set G. Formally, COV is defined as

: CD
cov(s,g) - Laaminyes d|8|(X’ VIXEGH )

where d°P(X,Y’) denote the chamfer distance between two
point clouds X and Y.

Minimum matching distance (MMD) measures the fi-
delity of generated shapes. For each shape in the reference
set S, the chamfer distance to its nearest neighbor in the
generated set G is computed. MMD is defined as the average
over all the nearest distances:

_ L . CD
MMD(S, G) = | 5|yze;s§légd (X,Y). (7

Jensen-Shannon Divergence (JSD) is a statistical dis-
tance metric between two data distributions. Here, it mea-
sures the similarity between the reference set S and the gen-
erated set G by computing the marginal point distributions:

1 1
JSD(Ps, Pg) = §DKL(P5||M) + §DKL(PQ||M), ®)

where M = %(Ps + Pg) and Dy is the standard KL-
divergence. Ps and Py are marginal distributions of points
in the reference and generated sets, approximated by dis-
cretizing the space into 28% voxel grids and assigning each
point from the point cloud to one of them.

Since our full test set is relatively large, we randomly
sample a reference set of 1000 shapes and generate 3000
shapes using our method to compute the metric scores. To
reduce the sampling bias, we repeat this evaluation process
for three times and report the average scores.



