
Appendix

A. Theoretical Results
We first define the Lipschitz constant Lf again for a bet-

ter readability. Let f : Rn → R be a mapping function.
Then, Lf is the minimum real number such that:

|f(x)− f(y)| ≤ Lf∥x− y∥,∀x, y ∈ Rn. (1)

Lemma 3. Let f : Rn → R be a continuously differen-
tiable function and Lf be the Lipschitz constant of f . Then
the Lipschitz constraint (1) is equivalent to

∥∇xf(x)∥ ≤ Lf ,∀x ∈ Rn. (2)

Proof. We first prove the sufficient condition.
(⇒) From the definition of Lipschitz constraint (1), we
know

|f(x)− f(y)| ≤ Lf∥x− y∥. (3)

Now, we consider the norm of directional derivative at x
along with the direction of (y − x):

⟨∇f(x),
y − x

∥y − x∥
⟩ = lim

y→x

|f(y)− f(x)|
∥x− y∥

≤ Lf , (4)

where ⟨·, ·⟩ is the inner product. Since the norm of gradient
is the maximum norm of directional derivative, then

∥∇f(x)∥ ≤ Lf . (5)

We then prove the necessary condition.
(⇐) By the assumption, f is continuous and differentiable.
Therefore, the conditions of Gradient theorem are satisfied,
and thus we can only consider the line integral along the
straight line from y to x:

|f(x)− f(y)| (6a)

=
∣∣∣ ∫ x

y

∇f(r)dr
∣∣∣ (6b)

=
∣∣∣ ∫ 1

0

⟨∇f(xt+ y(1− t)), x− y⟩dt
∣∣∣ (6c)

≤
∣∣∣ ∫ 1

0

∥∇f(xt+ y(1− t))∥ · ∥x− y∥dt
∣∣∣ (6d)

≤ Lf

∣∣∣ ∫ 1

0

∥x− y∥dt
∣∣∣ (6e)

= Lf∥x− y∥. (6f)

The theorem follows.

Theorem 5. Let fK : Rn → R be a layer-wise 1-Lipschitz
constrained network with K layers. Then the Lipschitz con-
stant of the first k-layer network Lfk is upper-bounded by
Lfk−1

, i.e.,

Lfk ≤ Lfk−1
,∀k ∈ {2 · · ·K}. (7)

Proof. Since all the layers including activation functions
are all 1-Lipschitz constrained, i.e.,

∥Wk · x−Wk · y∥ ≤ ∥x− y∥,∀x, y ∈ Rdk−1

Lϕk
= 1.

(8)

We can infer the upper bound of feature distance at layer k
by Eq.(8):

∥fk(x)− fk(y)∥
= ∥ϕk(Wk · fk−1(x) + bk)− ϕk(Wk · fk−1(y) + bk)∥
≤ Lϕk

∥(Wk · fk−1(x) + bk)− (Wk · fk−1(y) + bk)∥
≤ Lϕk

Lk∥fk−1(x)− fk−1(y)∥
= ∥fk−1(x)− fk−1(y)∥.

(9)
This result implies

∥fk(x)− fk(y)∥
∥x− y∥

≤ ∥fk−1(x)− fk−1(y)∥
∥x− y∥

,∀x, y ∈ Rn.

(10)
The theorem follows.

Theorem 6. Let f : Rn → R be a continuously dif-
ferentiable function which is modeled by a neural net-
work, and all the activation functions of network f are
piecewise linear. Then the normalized function f̂(x) =
f(x)/

(
∥∇xf(x)∥+∥f(x)∥

)
is 1-Lipschitz constrained, i.e.,

∥∇xf̂(x)∥ =

∥∥∥∥∥ ∥∇f∥
∥∇f∥+ |f |

∥∥∥∥∥
2

≤ 1. (11)

Proof. For simplicity, function arguments are ignored here.

By definition, the gradient norm of f̂(x) is:

∥∇f̂∥ =

∥∥∥∥∥∇
(

f

∥∇f∥+ |f |

)∥∥∥∥∥ (12a)

=

∥∥∥∥∥∇f
(
∥∇f∥+ |f |

)
− f∇

(
∥∇f∥+ |f |

)(
∥∇f∥+ |f |

)2
∥∥∥∥∥.
(12b)

By simple chain rule, we know that:

∇∥∇f∥ = ∇2f
∇f

∥∇f∥
, (13a)

∇|f | = ∇f
f

|f |
. (13b)

Since the network f contains only piecewise linear activa-
tion functions, the Hessian matrix ∇2f is a zero matrix. The
Eq.(12b) can be simplified:

∥∇f̂∥ =

∥∥∥∥∥ ∥∇f∥2(
∥∇f∥+ |f |

)2
∥∥∥∥∥ =

∥∥∥∥∥ ∥∇f∥
∥∇f∥+ |f |

∥∥∥∥∥
2

≤ 1.

(14)
The theorem follows.

B. Supplemental Experiments
Please note that the source codes are archived for the verifi-
cation in supplementary materials.

B.1. Supplemental Ablation Study

Figure 1 compares the effectiveness of different activa-
tion functions in terms of IS and FID on CIFAR-10 dataset.
The results show that the ReLU activation function achieves
best IS and FID for different approaches. Moreover, the
ReLU activation function with the proposed GN outper-
forms other state-of-the-art normalization and regulariza-
tion approaches. It is worth noting that the original Softplus
activation function achieves low IS and high FID for dif-
ferent approaches. However, by setting β to 20, the result
can be significantly better since Softplus becomes similar
to ReLU if β increases. Moreover, Figure 2 compares the
effectiveness of different ζ(x) in terms of IS and FID on
CIFAR-10 dataset. The results indicate that the variance
of Inception Score and FID for GN0 is large for different
architectures and datasets. The proposed GN outperforms
the alternatives, which is consistent to the experiments on
STL-10 dataset.

B.2. Decision Boundary Visualization

We conduct an experiment similar to [11] for the visu-
alization. The value surfaces of binary classification tasks
are demonstrated in Figure 3. The results demonstrate that
the value surface of vanilla GAN (Figure 3b) contains steep

Figure 1: Comparison of activation functions including
ELU [2], ReLU [10] and Softplus [3] on CIFAR-10.

Figure 2: Comparison of variants of gradient normaliza-
tion on CIFAR-10. The experiments include ζ(x) = |f(x)|
(GN), ζ(x) = 1 (GN1) and ζ(x) = 0 (GN0).

cliffs near to the decision boundary, which causes gradi-
ent explosion when the synthetic samples are located in this
area. With the regularization or normalization applied to
discriminator, the value surface becomes smooth in varying
levels as shown in Figures 3(c)-(f).

B.3. Training Speed

Table 1 shows the training speed of different approaches
with ResNet as the backbone network on CIFAR-10 dataset.
All the training processes are performed on NVIDIA RTX
2080Ti five times, and we report the average results in terms
of update iterations per second. The results show that differ-
ent approaches require additional computation as compared
to the Vanilla GAN. It is worth noting that although the
training speed of the proposed GN is only compatible with
1-GP, the proposed GN outperforms the other approaches in
terms of IS and FID. In other words, even with more com-
putation, other approaches can not improve their results. On
the other hand, the training process is offline, while the in-
ference speed is the same for different approaches.

B.4. Loss Function Comparison

We further investigate the performance of the proposed
GN with different loss functions. Notably, the Gradient
Normalization makes the outputs of discriminators saturate

(a) Theoretical (b) Vanilla GAN (c) 0-GP (d) 1-GP (e) SN (f) GN

Figure 3: The theoretical and empirical value surfaces of discriminators which are parameterized by a 2-layer MLP with
hidden size 512. Real samples are drawn from a 2D multivariate Gaussian and fixed for all discriminators, while the fake
samples are sampled from the other 2D multivariate Gaussian infinitely. (a) The theoretically optimal discriminator D∗(x) =
pr(x)/(pr(x) + pg(x)). (f) Our gradient normalization.

Method Generator (it/s) Discriminator (it/s)
Vanilla 6.91 15.73

SN 6.52 14.41
1-GP 4.70 7.66
GN 3.68 6.48

Table 1: Training speed of generator and discriminator.

in range [−1, 1], and thus the sigmoid at the end of dis-
criminator can be eliminated when the non-saturating loss
is used. Moreover, the hinge loss is equivalent to Wasser-
stein loss in the perspective of gradients when GN is used,
i.e.,

∇Lhinge =∇Ex∼pg(x)[max(1 + D̂(x), 0)]+

∇Ex∼pr(x)[max(1− D̂(x), 0)]

=∇Ex∼pg(x)[1 + D̂(x)]+

∇Ex∼pr(x)[1− D̂(x)]

=∇Ex∼pg(x)[D̂(x)]−∇Ex∼pr(x)[D̂(x)]

=∇Lwasserstein

(15)

Table 2 shows the evaluation results of different loss
functions on CIFAR-10 in terms of Inception score and FID.
Both ResNet and CNN architectures are reported. Since the
Wasserstein loss is equivalent to hinge loss, the Wasserstein
loss is not listed. The performance of GN-GANs is consis-
tent with different loss functions.

C. Evaluation Details
Inception Score. For the Inception Score (IS), we divide
50k generated images into 10 partitions and calculate the
average and the standard deviation of Inception Score over
each partition. The final results are the average scores of
different training sessions.
Frechet Inception Distance. The configurations of FID are
described as follow. For the CIFAR-10 dataset, we use 50k

Loss Function IS↑ FID(train)↓ FID(test)↓
Standard CNN
Hinge 7.67±.14 18.20±.12 22.24±.88
NS 7.78±.11 18.17±.61 22.36±.59
NS−sigmoid 7.69±.16 18.93±.87 23.19±.86
ResNet
Hinge 8.49±.11 11.13±.18 15.33±.16
NS 8.49±.11 10.97±.22 15.15±.29
NS−sigmoid 8.49±.09 11.01±.26 15.14±.32

Table 2: Loss function comparison of GN-GANs on
CIFAR-10. Note that the non-saturating loss without sig-
moid at the last layer is denoted by NS−sigmoid.

generated samples vs. 50k training images and 10k gener-
ated samples vs. 10k test images. For the STL-10 dataset,
we use 50k generated samples vs. 100k unlabeled images
and 10k generated samples vs. 100k unlabeled images. For
the CelebA-HQ, we use 30k generated samples vs. 30k
training images. For the LSUN Church Outdoor, we use 50k
generated samples vs. 126k training images. In the training
process, models are trained on CIFAR-10 training set, STL-
10 unlabeled images, CelebA-HQ training set and LSUN
Church Outdoor training set.

D. Experimental Details

Unconditional Image Generation on CIFAR-10 and
STL-10. For the fair comparison, we use the ResNet ar-
chitecture as well as the Standard CNN used in [9]. The
last layer of ResNet, i.e., global sum pooling, is replaced
by the global average pooling. Moreover, all the weights
of fully-connected layers and CNN layers are initialized by
Kaiming Normal Initialization [4], and the biases are ini-
tialized to zero. We use Adam [7] as the optimizer with
parameters αG = 2 × 10−4, αD = 4 × 10−4, β1 = 0,
β2 = 0.9 and batch size M = 64. The learning rate linearly

decays to 0 through the training. The generator is updated
once for every 5 discriminator update steps. All the training
processes are stopped after the generator update 200k steps.
For the data augmentation, the random horizontal flipping
is applied for every method (including our method and re-
implementation). The augmentation setting in Table 3 is
used for Consistency Regularization [12]. For more quali-
tative results, please refer to Figures 4 and 5.

1. RandomHorizontalFlipping(p=0.5)
2. RandomPixelShifting(pixel=0.2×ImageSize)

Table 3: Augmentation for consistency regularization on
CIFAR-10 and STL-10.

Conditional Image Generation on CIFAR-10. To show
the results of conditional image generation on CIFAR-10
dataset, we compare the results of BigGAN [1], BigGAN
with the Consistency Regularization (CR), BigGAN with
the proposed GN, and BigGAN with the proposed GN and
CR. Here, the discriminator in the conditional GAN is con-
sidered as a conditional function, i.e., Dy(x), instead of the
multi-variable function, i.e., D(x, y). Therefore, the Gradi-
ent Normalization can be formulated as follows:

D̂y(x) =
Dy(x)

∥∇xDy(x)∥+ ∥Dy(x)∥
, (16)

where Dy(x) is the discriminator conditional on y. Simi-
larly, by Theorem 5, D̂y(x) is a Lipschitz constrained net-
work with respect to x.

Moreover, we take the official implementation of Big-
GAN [1] for the reference. We use Adam as the optimizer
with parameters αG = 1× 10−4, αD = 2× 10−4, β1 = 0,
β2 = 0.999 and the batch size as 50. The generator is up-
dated once for every 4 discriminator update steps. All the
training processes are stopped after the generator updates
125k steps. The real images are augmented by the random
horizontal flipping. Following the previous setting [5, 8],
we employ the moving averages on generator weights with
a decay of 0.9999. The pipeline for CR is shown in Table 3.
Table 4 shows the performance of different approaches in
terms of IS, FID (train) and FID (test). The results indicate
that BigGAN with the proposed GN is better than BigGAN
with CR, while BigGAN with both GN and CR achieves the
best performance. For more qualitative results, please refer
to Figure 6.
Unconditional Image Generation on CelebA-HQ and
LSUN Church Outdoor. We further evaluate the pro-
posed Gradient Normalization on two high-resolution im-
age datasets, i.e., CelebA-HQ and LSUN Church Outdoor.
For the augmentation, the random horizontal flipping is
adopted for both datasets. We use the architecture pro-
posed by SN-GAN [9] for generating 256 × 256 images.

Table 4: Inception Score(IS) and FID of conditional image
generation on CIFAR-10.

Method IS↑ FID(train)↓ FID(test)↓
BigGAN [1] 9.22 - 14.73
BigGAN-CR [12] - - 11.48
GN-BigGAN 9.22±.13 5.87±.15 10.05±.23
GN-BigGAN-CR 9.35±.14 4.86±.07 8.92±.15

We use Adam again as the optimizer with parameters αG =
2×10−4, αD = 2×10−4, β1 = 0, β2 = 0.9 and batch size
as 64. The generator is updated once for every 5 discrimina-
tor update steps. All the training processes are stopped after
the generator update 100k steps. We employ the moving
averages on generator weights with a decay of 0.9999. The
Inception Score and FID are shown in Table 5. It is worth
noting that the performance can be further improved with a
better architecture. For more qualitative results, please refer
to Figures 7 and 8.

Table 5: Inception Score and FID of unconditional image
generation on CelebA-HQ and LSUN Church Outdoor. †
represents that we provide SN-GAN implementation as the
baseline.

Dataset GN-GAN SN-GAN
CelebA-HQ 128 14.78 25.95 (from [30])
CelebA-HQ 256 7.67 14.45†

LSUN Church 256 5.41 8.44†

Experiments on Progressive Growing Architecture. We
further test the StyleGAN [6] with the proposed Gradient
Normalization on CelebA-HQ 1024 × 1024. Note that the
R1 regularization and Gradient Penalty are replaced with
GN in our experiment. We use hinge loss as the objec-
tive function and Adam as the optimizer. The learning rates
αG and αD are both set to 0.001 for resolutions of 82, 162,
322 and 642, and 0.0015 otherwise. For the other settings,
we use the same parameters as StyleGAN. The FID of GN-
StyleGAN is 8.65 which is calculated by 50k generated im-
ages vs. 30k training images. The generated samples are
shown in Figures 9-12.

(a) GN-GAN CNN (b) GN-GAN-CR CNN

(c) GN-GAN ResNet (d) GN-GAN-CR ResNet

Figure 4: Unconditional image generation on CIFAR-10.

(a) GN-GAN CNN (b) GN-GAN-CR CNN

(c) GN-GAN ResNet (d) GN-GAN-CR ResNet

Figure 5: Unconditional image generation on STL-10.

Figure 6: Conditional image generation on CIFAR-10.

Figure 7: Unconditional image generation on CelebA-HQ 256× 256.

Figure 8: Unconditional image generation on LSUN Church Outdoor 256× 256.

Figure 9: GN-StyleGAN on CelebA-HQ 1024× 1024.

Figure 10: GN-StyleGAN on CelebA-HQ 1024× 1024.

Figure 11: GN-StyleGAN on CelebA-HQ 1024× 1024.

Figure 12: GN-StyleGAN on CelebA-HQ 1024× 1024.

References
[1] Karen Simonyan Andrew Brock, Jeff Donahue. Large scale

gan training for high fidelity natural image synthesis. In In-
ternational Conference on Learning Representations (ICLR),
2019. 4

[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus). In International Conference on Learning
Representations (ICLR), 2016. 2

[3] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In Proceedings of the
14th International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 315–323, 2011. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In IEEE International
Conference on Computer Vision (ICCV), pages 1026–1034,
2015. 3

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. In International Conference on Learning Rep-
resentations (ICLR), 2017. 4

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 4

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 3

[8] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
Which training methods for gans do actually converge?
In International Conference on Machine Learning (ICML),
2018. 4

[9] Takeru Miyato, T. Kataoka, Masanori Koyama, and Y.
Yoshida. Spectral normalization for generative adversarial
networks. In International Conference on Learning Repre-
sentations (ICLR), 2018. 3, 4

[10] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th International Conference on International Conference
on Machine Learning (ICML), pages 807–814, 2010. 2

[11] Hoang Thanh-Tung, Truyen Tran, and Svetha Venkatesh.
Improving generalization and stability of generative adver-
sarial networks. In International Conference on Learning
Representations (ICLR), 2019. 2

[12] H. Zhang, Zizhao Zhang, Augustus Odena, and H. Lee. Con-
sistency regularization for generative adversarial networks.
In International Conference on Learning Representations
(ICLR), 2020. 4

