
How to Train Neural Networks for Flare Removal: Supplement

Yicheng Wu1 † Qiurui He2 Tianfan Xue2 Rahul Garg2 Jiawen Chen3

Ashok Veeraraghavan1 Jonathan T. Barron2

1Rice University 2Google Research 3Adobe, Inc.
wuyichengg@gmail.com jiawen@adobe.com vashok@rice.edu

{qiurui, tianfan, rahulgarg, barron}@google.com

1. Simulating random scattering flare
To simulate scattering flare with our wave optics model,

we randomly sample the aperture function A, the light
source’s 3D location (x, y, z), and the spectral response
function SRF .

Notations

• N(µ, σ2): normal distribution with mean µ and stan-
dard deviation σ.

• U(a, b): uniform distribution on the interval [a, b].

• kλ: the wavenumber corresponding to wavelength λ.
kλ = 2π/λ.

1.1. Aperture function

As Fig. 3(a) of the main text illustrates, we simulate dust
and scratches with random dots and polylines on a clean
disk-shaped aperture of radius R = 3000 pixels.

For each aperture function, we randomly generate nd ∼
N(30, 52) dots with maximum radius rmax

d ∼ N(100, 502).
Each individual dot’s radius rd is drawn independently from
U(0, rmax

d ).
Additionally, we also generate np ∼ N(30, 52) poly-

lines, each of which consists nl ∼ U(1, 16) line segments
connected from end to end. The maximum segment length
for each aperture function is lmax

p ∼ N(20, 52), and each in-
dividual line segment’s length is drawn independently from
U(0, lmax

p ).
The opacity of each of the dots and polylines is sampled

independently from U(0, 1), and its location (u, v) on the
aperture plane is also drawn uniformly.

1.2. Phase shift

The light source’s 3D location (x, y, z) determines the
phase shift ϕλ of the pupil function Pλ. As shown in Eq. 3

†This work was done while Yicheng Wu was an intern at Google Re-
search. He is currently a Research Scientist at Snap Research.

of the main text, it consists of a linear term ϕS
λ and a defocus

term ϕDF
λ .

The linear phase shift ϕS
λ on the aperture plane becomes

a spatial shift on the sensor plane due to the Fourier trans-
form F{·} in Eq. 4 of the main text. For an 800×800 image
sensor with the center as the origin, the center of the light
source (x, y) is sampled from x, y ∼ U(−500, 500).

The term ϕDF
λ (z) is the defocus aberration due to the

mismatch between the in-focus depth z0 of the lens and the
actual depth z of the light source. The analytical expression
for ϕDF

λ (z) is

ϕDF
λ (z) = kλ

u2 + v2

2

(
1

z
− 1

z0

)
= kλ · r(u, v)2 ·Wm(z) (1)

where kλ is the wavenumber, (u, v) are aperture coordi-
nates, and r(u, v) =

√
u2 + v2/R is the relative displace-

ment on the aperture plane. Wm(z) is defined as

Wm(z) =
R2

2

(
1

z
− 1

z0

)
(2)

and quantifies the amount of defocus in terms of the depth
z. Since we do not target any specific camera devices (i.e.,
specific R and z0 values), it suffices to sample the value of
Wm directly from N(0, σ2), with σ = 5/kλ=550nm.

1.3. Spectral response function

The spectral response SRF c(λ) describes the sensitivity
of color channel c to wavelength λ, where c ∈ {R,G,B}.

We model SRF c(λ) as a Gaussian probability density
function N(µc, σ

2
c ). The mean µc is the central wavelength

of each channel in nanometers, and is drawn from µR ∼
U(620, 640), µG ∼ U(540, 560), and µB ∼ U(460, 480).
The standard deviation σc represents the width of the pass-
band of each color channel, and is drawn independently for
each channel from U(50, 60).

We then discretize the wavelength λ in SRF c(λ) for
each of the RGB channels at 5nm intervals from λ = 380nm

1



3

51
22

64 64

128 128

25
62

256 256

12
82

512 512

1024

64
2

32
2

64
2

1024 512

512 256

256 128

128 64 64 3

12
82

25
62

51
22

conv 3x3, ReLU, BN
copy and concatenate
max pool 2x2
upsampling 2x2
conv 1x1, sigmoid

Figure 1. The U-Net architecture [6] we use in the flare removal
task.

to 740nm, resulting in a 73-vector for each channel. The 3
vectors are stacked to produce an instance of SRF in the
form of a 3× 73 matrix.

2. Flare-only image augmentation
We augment the captured flare-only images F by apply-

ing random geometric and color transformations. For ge-
ometric augmentation, we generate a 3 × 3 affine trans-
form matrix with random rotation (∼ U(0, 2π)), ran-
dom translation (∼ U(−10, 10) pixels), random shear (∼
U(−π/9, π/9)), and random scale (∼ U(0.9, 1.2) for x
and y independently). For color augmentation, we multi-
ply each color channel with a random weight in U(0, 10).
Pixel values are clipped to [0, 1] after the transformed flare
image is composited with the clean image.

3. Networks and training details
To show the effectiveness of our method, we train two

popular neural networks with distinct architectures. These
networks have not previously been used for the task of re-
moving lens flare. Using our method, both networks pro-
duce satisfactory results. We detail the network architec-
tures and training configurations below.

3.1. Context aggregation network (CAN)

We repurpose a network originally designed for re-
flection removal [9], which is a variant of the original
CAN [8]. Starting from the 512 × 512 × 3 input image,
the network first extracts features from a pre-trained VGG-
19 network [7] at layers conv1 2, conv2 2, conv3 2,
conv4 2, and conv5 2. Next, these features are com-
bined with the input image to form a 1475-channel tensor,
which is subsequently reduced to 64 channels with a 1 × 1
convolution. It is then passed through eight 3 × 3 convo-
lution layers with 64 output channels at dilation rates of 1
– 64. The last layer is a 1 × 1 convolution with 3 output
channels.

3.2. U-Net

The U-Net [6] is shown in Fig. 1. The input image IF is
512×512×3. Each convolution operator consists of a 3×3
convolution and ReLU activation. We use 2×2 max pooling
for downsampling and resize–convolution for upsampling.
Concatenation is applied between the encoder and decoder
to avoid the vanishing gradient problem. At the final layer,
we use a sigmoid function to squeeze the activations to the
[0, 1] range.

3.3. Training details

We train both CAN and U-Net using our semi-synthetic
dataset. The clean images come from the Flickr dataset
of [9]. The flare-only images are generated as described
in the previous sections, and augmented on the fly during
training. Training lasted 1.2M iterations (approximately 60
epochs over the 20k images in the Flickr dataset) with batch
size 2 on an Nvidia V100 GPU. We use the Adam opti-
mizer [4] with default parameters and a fixed learning rate
of 10−4.

4. Mask feathering
As mentioned in Sec. 5.2 of the main text, we detect the

light source and create a feathered mask Mf to smoothly
blend the bright illuminants into the network output.

Starting from a binary mask M (the pixels where the in-
put luminance is greater than 0.99), we apply morphologi-
cal opening with a disk kernel of size equal to 0.5% of the
image size. To find the primary illuminant, we partition the
mask into connected components and find the equivalent di-
ameter D of the largest region (the diameter of a circle with
the same area as the region). We then blur the binary mask
M using a disk kernel of diameter D. Finally, we scale the
blurred mask intensity by 3 in order to guarantee that all the
pixels inside the illuminant are saturated after blurring, and
clip the mask to [0, 1]. This is the Mf used in Eq. 11 which
has a feathered edge.

5. Flare removal for downstream tasks
In Fig. 2, we show that removing lens flare may benefit

downstream tasks such as semantic segmentation and depth
estimation. We look forward to thoroughly investigating the
effect of reduced flare on a range of computer vision algo-
rithms.

6. More results
Fig. 3 provides more visual comparisons between our

method and prior work. Overall, we have 20 real test im-
ages with ground truth. The complete results, including the
input images and output images from different methods, can
be found at https://yichengwu.github.io/flare-removal/.

https://yichengwu.github.io/flare-removal/


(a) Input and our output (b) Semantic segmentation [2] (c) Monocular depth [5]

Figure 2. A pair of images with flare and our output (a). Semantic segmentation (b) has much less misclassification once flare is removed
using our method. Similarly, monocular depth estimation (c) is more accurate (e.g., the bush on the left in the top image and the tree in the
distance in the lower image).

We also show 24 additional test images captured using
the same type of lens as in Sec. 4.2 of the main text (Fig. 4),
and 24 test images captured using 7 other lens types with
different focal lengths (Fig. 5).

While our results are mostly satisfactory, there are cer-
tainly cases where it does not perform well. They typically
have strong flare over the entire image. There is a trade-
off between flare removal and scene preservation, and we
prefer the latter to reduce artifacts.

References
[1] CS Asha, Sooraj Kumar Bhat, Deepa Nayak, and Chaithra

Bhat. Auto removal of bright spot from images captured
against flashing light source. IEEE DISCOVER, 2019. 4

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Flo-
rian Schroff, and Hartwig Adam. Encoder-decoder with
atrous separable convolution for semantic image segmenta-
tion. ECCV, 2018. 3

[3] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze
removal using dark channel prior. IEEE TPAMI, 2010. 4

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2017. 2

[5] Katrin Lasinger, René Ranftl, Konrad Schindler, and Vladlen
Koltun. Towards robust monocular depth estimation: Mixing
datasets for zero-shot cross-dataset transfer. TPAMI, 2020. 3

[6] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
MICCAI, 2015. 2, 4

[7] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. ICLR,
2015. 2

[8] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. ICLR, 2016. 2

[9] Xuaner Zhang, Ren Ng, and Qifeng Chen. Single image re-
flection separation with perceptual losses. CVPR, 2018. 2,
4



Input Flare spot removal [1] Dehaze [3] Dereflection [9] Ours + network [9] Ours + U-Net [6] Ground truth

R
ea

ls
ce

ne
3

PSNR=17.67
SSIM=0.866

PSNR=17.67
SSIM=0.866

PSNR=14.58
SSIM=0.823

PSNR=16.69
SSIM=0.813

PSNR=25.94
SSIM=0.899

PSNR=25.58
SSIM=0.905

R
ea

ls
ce

ne
4

PSNR=20.02
SSIM=0.780

PSNR=20.02
SSIM=0.780

PSNR=16.09
SSIM=0.703

PSNR=23.71
SSIM=0.836

PSNR=24.27
SSIM=0.838

PSNR=24.57
SSIM=0.847

R
ea

ls
ce

ne
5

PSNR=15.70
SSIM=0.750

PSNR=15.70
SSIM=0.750

PSNR=11.68
SSIM=0.624

PSNR=19.67
SSIM=0.796

PSNR=19.94
SSIM=0.800

PSNR=21.29
SSIM=0.825

R
ea

ls
ce

ne
6

PSNR=18.61
SSIM=0.848

PSNR=18.61
SSIM=0.848

PSNR=19.68
SSIM=0.888

PSNR=23.56
SSIM=0.873

PSNR=25.68
SSIM=0.915

PSNR=26.90
SSIM=0.924

R
ea

ls
ce

ne
7

PSNR=20.51
SSIM=0.814

PSNR=20.51
SSIM=0.814

PSNR=24.05
SSIM=0.859

PSNR=23.45
SSIM=0.849

PSNR=24.47
SSIM=0.855

PSNR=25.51
SSIM=0.875

R
ea

ls
ce

ne
8

PSNR=24.35
SSIM=0.902

PSNR=24.35
SSIM=0.902

PSNR=20.68
SSIM=0.807

PSNR=22.00
SSIM=0.898

PSNR=29.65
SSIM=0.905

PSNR=32.64
SSIM=0.919

R
ea

ls
ce

ne
9

PSNR=15.90
SSIM=0.802

PSNR=15.90
SSIM=0.802

PSNR=18.83
SSIM=0.810

PSNR=20.10
SSIM=0.838

PSNR=19.07
SSIM=0.839

PSNR=21.74
SSIM=0.863

R
ea

ls
ce

ne
10

PSNR=20.04
SSIM=0.867

PSNR=20.04
SSIM=0.867

PSNR=22.26
SSIM=0.825

PSNR=16.93
SSIM=0.853

PSNR=25.95
SSIM=0.878

PSNR=26.12
SSIM=0.895

Figure 3. More visual comparison between three related methods and ours on real scenes, with PSNR and SSIM values.



In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

Figure 4. 24 testing images captured by the same type of lens as in Sec. 4.2 of the main text. Our method is effective in removing most of
the lens flare, with occasional failures where it only removes a part of the flare (red box).



In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

Figure 5. 24 testing images captured by 7 other lens types with different designs and focal lengths. Our method successfully remove most
flares, with a few occasional failures that the algorithm either fails to identify flare (e.g., first red box) or incorrectly removes non-flare
highlights (e.g., clouds in the second red box).


