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A. Experimental Details
In this section, we introduce the experiment details. We

first introduce the out-of-distribution (OOD) datasets used
in our experiments. Then, we present the experimental set-
tings of our method. Finally, we provide details about the
evaluation metrics used for evaluating the classification and
OOD detection performance of our method.

A.1. Out-of-Distribution Datasets

We use the OOD datasets below in our experiments:

• TinyImageNet. The Tiny ImageNet dataset contains
50,000 training images from 200 different classes,
which are drawn from the original 1,000 classes of Im-
ageNet. We randomly choose samples from training
set and resize each image to 32 × 32.

• Places-365. The Places-365 dataset has 365 scene cat-
egories and there are 900 images per category in the
test set. The OOD samples are randomly chosen from
test set of Places-365 and resize to 32 × 32.

A.2. Experimental Setup

For all CIFAR experiments, we train PreAct ResNet-18
network for 300 epochs using SGD with the momentum 0.9
and weight decay 5 · 10−4. The initial learning rate is set to
0.15 and cosine decay schedule is used. The batch size is set
to 512. The dimension of projector layer is set to 64. The
temperature parameter is fixed as τ1 = 0.3 and τ2 = 1.0.
For CIFAR-10 experiments, we use k = 30 for sym. noise
and k = 10 for asym. noise, warmup with cross-entropy
loss without other components for 5 epoch. For all CIFAR-
100 experiments, we use k = 200, warmup for 30 epoch for
CIFAR-100 datasets. For parameter η, in LOND task, we
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use 0.8 for all experiments, and in closed-world noisy label
task, we set it to 0.7 for CIFAR-10 and 0.6 for CIFAR-100.

For Webvision-50 dataset, most of hyperparameters are
the same with CIFAR experiments except we set k = 100,
η = 0.8. We train the inception-resnet v2 model using SGD
following prior works. The initial learning rate is set to
0.2 and the batch size is 256. We train the network for 80
epochs and the warmup stage lasts 15 epochs.

A.3. Evaluation Metrics

We use the following three performance metrics to eval-
uate the performance.

• Classification Accuracy. The top-1 classification ac-
curacy is calculated as the mean accuracy over all
known (IND) classes. Predictions of data are obtained
as the classes with the highest softmax probabilities.

• AUROC. AUROC is the Area Under the Receiver Op-
erating Characteristic curve and can be calculated by
the area under the TPR against FPR curve.

• F-measure. The F-measure (F) is calculated as 2 times
the product of precision (p) and recall (r) divided by the
sum of p and r:

F = 2 · p · r
p+ r

. (1)

p is calculated as true positive over the sum of Tp and
false positive:

p =
Tp

Tp + Fp
. (2)

r is calculated as Tp over the sum of Tp and false neg-
ative:

r =
Tp

Tp + Fn
. (3)
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(a) Effectiveness of noise correction.
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(b) Impact of hyperparameter η
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Figure 1: Experimental results. (a) Effectiveness of noise correction. Both CIFAR-10 and CIFAR-100 datasets are under
50% sym. noise. (b-c) Analysis of the impact of hyperparameters under 50% IND noise (CIFAR-100), 20k and 10k OOD
noise (Places-365) in training set and test set, respectively. η is for confidence-based selection and k is for k-NN graph.

B. Additional Experimental Results

In this section, we first show the visualization results
of feature representation and subgraph selection, which
demonstrate the validity of our methods. Then we present
the effectiveness of graph-based noise correction. We also
analyze the sensitivity of hyperparameters. In addition, the
performance of model ensemble and the impact of AugMix
on WebVision-50 is provided. Finally, we compare NGC
with recent related work, ProtoMix [1] on LOND task.

B.1. Visualization Results

Visualization of learned representation. We visualize
the learned feature representations of our method and Di-
videMix via t-SNE in Figure 2. CIFAR-10 with 50% sym.
noise is used as IND dataset and 20k OOD samples are
added in each experiment. We use CIFAR-100, TinyIm-
ageNet, and Places-365 as OOD datasets for each exper-
iment, respectively. The points in brown represent OOD
samples, while samples with other colors are from CIFAR-
10. Figures 2a to 2c show the learned representations of
DivideMix, which are extracted from the last layer of the
model. For comparison, Figures 2d to 2f visualize the out-
put of the projector Proj in our method. It can be observed
that our method can learn more meaningful representations
and separate OOD samples from IND samples effectively.

Visualization of subgraph selection. To further justify
the efficacy of the proposed subgraph selection, we visual-
ize the k-NN graph obtained at different training iterations
in Figure 3. CIFAR-10 with 50% sym. noise is used as
IND dataset and 20k CIFAR-100 data are added as OOD
samples. We draw all the samples with pseudo-label 1. In
these graphs, we use green points to represent samples re-
moved by confidence-based selection while black points are
samples removed by geometry-based selection. Points in
yellow represent clean data selected by our method. The

edges included in the largest connected component are in
red. At different training iterations, we visualize the con-
structed k-NN graph (top row) and the refined graph (bot-
tom row) by performing our confidence-based selection.
As the training progresses, the feature representations of
IND and OOD samples are gradually separated. More-
over, it can be seen that confidence-based selection signifi-
cantly degrades the connectivity between clean samples and
OOD samples, which can be further beneficial to geometry-
based selection. As a consequence, samples retained by
geometry-based selection distribute more and more com-
pact in feature space. This observation justifies the validity
of subgraph selection.

B.2. Effectiveness of Noise Correction

We demonstrate the effectiveness of graph-based noise
correction on CIFAR-10 and CIFAR-100 datasets with 50%
symmetric noise. As shown in Figure 1a, As the training
progresses, the noise rate continues decreasing. Our method
reduces noise rate from 50% to 4.24% for CIFAR-10 and
14.67% for CIFAR-100. This validates our noise correction
methods can correct noisy labels effectively.

B.3. Hyperparameter Sensitivity Analysis

Analysis of η and k. We investigate the impact of η
for confidence-based selection and k which is used to con-
struct the k-NN graph. The results are shown in Figure 1b
and 1c. We vary η from 0.6 to 0.9, and the test accuracy
increases from 70% to 72%, showing that a small confi-
dence threshold results in more label noise being included.
AUROC increases from 72.08 to 92.23, this is because a
higher threshold η can filter out more OOD noisy samples,
which can be further beneficial for representation learning
and the calculation of prototypes. As for the parameter k,
we choose its value from {50, 100, 150, 200}. It can be
seen that NGC achieves similar performance with differ-



(a) CIFAR-100 as OOD (DivideMix) (b) TinyImageNet as OOD (DivideMix) (c) Places-365 as OOD (DivideMix)

(d) CIFAR-100 as OOD (Ours) (e) TinyImageNet as OOD (Ours) (f) Places-365 as OOD (Ours)

Figure 2: t-SNE visualization of learned feature representation. CIFAR-10 with 50% sym. noise is used as IND dataset and
20k OOD samples are added for all experiments. The OOD samples are represented by brown points.

ent values except k = 50. The reason is that when k is too
small, the k-NN graph is very sparse, resulting in fewer data
points being obtained from the largest connected compo-
nent, hence only a few clean samples are selected for train-
ing.

Analysis of ζ. We report F-measure under best threshold
ζ in Table 1. Even with fixed ζ from 0.5 to 0.7, our method
is robust enough and outperforms other methods with their
best values of ζ in most cases. Here we report results for
ζ = 0.5 and ζ = 0.7. We also report the standard deviation
of best ζ, which shows the stability of our method.

B.4. Performance of Model Ensemble

Since model ensemble has shown to be useful when deal-
ing with noisy data, we ensemble the outputs of two net-
works during testing phase and report the results in Table 2.
The complete DivideMix (DM) is used for comparison. Re-
sults show that our method outperforms DivideMix in most
cases.

Table 1: F-measure (threshold ζ). IND dataset is with 50%
symmetric noise, 20k and 10k OOD samples are added
into training set and test set, respectively. Bold: best;
Underlined: 2nd & 3rd.

IND OOD MPS ODIN MD Ours Oursζ=0.50 Oursζ=0.70

C-10

C-100 0.698(0.81) 0.681(0.83) 0.635(0.36) 0.838(0.55) 0.835(0.50) 0.788(0.70)

TIN 0.726(0.83) 0.707(0.85) 0.702(0.33) 0.875(0.54) 0.873(0.50) 0.802(0.70)

P-365 0.717(0.81) 0.705(0.14) 0.651(0.40) 0.887(0.56) 0.882(0.50) 0.827(0.70)

C-100 TIN 0.687(0.41) 0.705(0.02) 0.526(0.38) 0.773(0.67) 0.743(0.50) 0.770(0.70)

P-365 0.685(0.37) 0.696(0.01) 0.541(0.39) 0.731(0.70) 0.687(0.50) 0.731(0.70)

ζ (stand. dev.) 0.21 0.39 0.02 0.07 0.00 0.00

B.5. Impact of AugMix on WebVision-50

To better reveal the superiority of our method, we con-
duct ablation studies for AugMix on WebVision-50 dataset.
The results are reported in Table 3. First, it can be seen that



(a) 50 epoch (b) 100 epoch (c) 150 epoch

(d) 200 epoch (e) 250 epoch (f) 300 epoch

Figure 3: t-SNE visualization of the proposed subgraph selection at different training iterations. CIFAR-10 with 50% sym.
noise is used as IND dataset and 20k CIFAR-100 data are added as OOD samples. We draw all samples with pseudo-label 1.
Green points represent samples removed by confidence-based selection and black points are samples removed by geometry-
based selection. Points in yellow represent clean data selected by our method. Edges in the largest connected component
are colored red. We visualize the constructed k-NN graph (top row) and the refined graph (bottom row) by performing our
confidence-based selection.



AugMix does help enhance the performance. Second, with-
out applying AugMix, our method consistently outperforms
strong baselines, i.e., ELR and DivideMix. The results fur-
ther demonstrate the effectiveness of our method.

Table 2: Test accuracy (%) using model ensemble. + indi-
cates ensemble models.

Data CIFAR-10 CIFAR-100

Type Sym. Asym. Sym.

Ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

DM 95.0 93.7 92.4 74.2 91.4 74.8 72.1 57.6 29.2
Ours 95.88 94.54 91.59 80.46 90.55 78.98 75.91 62.70 29.76

DM+ 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0
Ours+ 96.27 95.09 92.20 83.75 91.70 81.08 77.16 64.00 34.18

Table 3: Ablation study for AugMix on WebVision-50.
+ indicates ensemble models.

Method
WebVision ILSVRC12

top-1 top-5 top-1 top-5

Ours (w/ AugMix) 79.16 91.84 74.44 91.04

ELR 76.26 91.26 68.71 87.84
Ours (w/o AugMix) 77.56 91.36 72.92 91.32

DivideMix+ 77.32 91.64 75.20 90.84
ELR+ 77.78 91.68 70.29 89.76
Ours+ (w/o AugMix) 79.08 91.80 75.12 91.72

B.6. Comparison with ProtoMix

As one of the most recent related works, ProtoMix [1]
employs unsupervised contrastive loss and mixup prototyp-
ical contrastive loss to learn robust representations, which
can address different types of noisy data. We report the
comparison results of NGC and ProtoMix on LOND task
in Table 4. For all experiments, we inject 50% symmet-
ric IND noise. 20k and 10k OOD samples are randomly
selected and added into training set and test set, respec-
tively. Although ProtoMix is not designed to detect OOD
examples at test time, it is natural to achieve this by mea-
suring the similarity between test examples and class pro-
totypes, as shown in Eq. (9) in the main text. From the
results, we can observe that NGC achieves better or com-
parable results in test accuracy. Regarding AUROC and
F-measure, NGC consistently outperforms ProtoMix in all
cases. Recall that, ProtoMix identifies IND and OOD noise
according to predictive confidence, which means samples
with high predictive confidence are determined as clean. As
a result, many noisy samples are likely to be misidentified
as DNNs gradually fit the training data. NGC overcomes

this problem by exploiting the geometric structure of data.
For each class, confident samples that clustered together are
further selected by calculating the largest connected com-
ponent. Our belief is that clean samples of the same class
should distribute closely to each other, while noisy samples
are pushed away. By first performing confidence-based se-
lection, it breaks the connection between noisy and clean
samples in the graph, which facilitates our geometry-based
selection. Consequently, NGC excludes more noisy sam-
ples from training and achieves better performance.

Table 4: Performance comparison of ProtoMix and NGC
(Ours) on LOND task. 50% symmetric IND noise is in-
jected into training set, 20k and 10k OOD samples are
added into training set and test set, respectively.

IND OOD
Accuracy AUROC F-measure

ProtoMix / NGC

C-10
C-100 92.51 / 92.31 84.64 / 90.37 0.783 / 0.838

TIN 93.12 / 93.54 93.47 / 94.18 0.862 / 0.875

P-365 92.76 / 93.67 94.14 / 94.31 0.868 / 0.887

C-100
TIN 72.80 / 73.49 78.58 / 94.24 0.653 / 0.773

P-365 72.05 / 73.44 75.19 / 91.20 0.624 / 0.731

C. Pseudo-code of Our Proposed Method
Algorithm 1 lists the pseudo-code of NGC. For a bet-

ter understanding of the proposed method, we illustrate the
whole process in Figure 4.
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Algorithm 1 Noisy Graph Cleaning Procedure (one epoch)

1: Input: training dataset {(xi, yi)Ni=1}, k-NN parameter k, confidence threshold η.
2: Construct the k-NN graph G on training samples.
3: Refine soft pseudo-label Ỹi for each sample xi by performing graph-based noise correction on G.
4: If maxk Ỹik < η and Ỹiyi ≤ 1

K , remove the point xi and its adjacent edges from the graph.
5: The resulting graph is denoted by G̃.
6: Initialize the set of clean data S = ∅.
7: for k = 1 · · ·K do
8: Remove points that do not belong to class k from graph G̃, i.e., ŷi 6= k,∀i ∈ [N ].
9: The resulting graph is denoted by G̃(k).

10: Determine the connected components of G̃(k) by disjoint-set data structures.
11: Remove small connected components of the graph G̃(k), that is, only the largest connected component is retained.
12: The resulting graph is denoted by G̃(k)lcc. Points in G̃(k)lcc are treated as clean samples.
13: Update clean data set S = S ∪ G̃(k)lcc.
14: end for
15: Calculate cross-entropy loss and subgraph-level contrastive loss on S.
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Figure 4: An illustration of proposed framework in binary classification case.


