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Abstract

The supplementary material is organized as follows:
Section 1 describes the implementation details. Section 2
explains the baseline active learning methods. Section 3
shows the original data of line charts or tables in the main
paper.

1. Implementation Details

As explained in the main paper, the pipeline of our
ReDAL contains four steps: (1) Train the deep learning
model in supervision with labeled dataset DL. (2) Calcu-
late region information score using softmax entropy, color
discontinuity, and structure complexity. (3) Diversity-aware
selection by penalizing visually similar regions appearing in
the same querying batch. (4) The top-ranked regions are la-
beled by annotators and added to the labeled dataset DL.
This section explains the implementation details of the first
three steps, and the fourth step has been explained clearly
in the main paper. Note that the following symbols are the
same as those in Section 3 of the main paper.

1.1. Network Training

For both S3DIS [1] and SemanticKITTI [2] datasets, the
networks are trained with Adam optimizer (initial learning
rate = 0.001) and cross-entropy loss. We train the network
on 8 V100 GPUs and set the batch size to 16. We set voxel
resolution to 5cm for both datasets.

On the S3DIS dataset, the deep learning model was
trained for 200 epochs on 3% of the initial fully labeled
point cloud scan and then fine-tuned for 150 epochs after
adding 2% labeled data each time for both network archi-
tecture backbones. On the SemanticKITTI dataset, the deep
learning model was trained for 100 epochs on 1% of the ini-
tial fully labeled point cloud scan and then fine-tuned for 30
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Figure 1. Visualization of divided sub-scene regions in Se-
manticKITTI dataset. Points of the same color in neighboring
places belong to the same region.

epochs after adding 1% labeled data each time for both net-
work architectures.

1.2. Region Information Estimation

We utilize the VCCS algorithm [7] to divide a 3D scene
into multiple sub-scene regions. In the algorithm, the whole
3D space is initially divided into multiple regions with two
hyper-parameters Rseed, Rvoxel, where Rseed indicates the
initial distance between regions and Rvoxel represents the
minimal region resolution. After that, the clustering proce-
dure adjusts the region boundary based on spatial or color
connectivity iteratively. For the S3DIS dataset, we set
Rseed, Rvoxel to a small value (Rseed = 1.0, Rvoxel = 0.1)
since objects in an indoor scene are small. For the Se-
manticKITTI dataset, we set Rseed, Rvoxel to a large value
(Rseed = 10, Rvoxel = 0.5). The reason is that the point
cloud is sparse in outdoor 3D space, and choosing larger pa-
rameters (Rseed, Rvoxel) can avoid creating small, unrepre-
sentative regions. An example of divided sub-scene regions
of the SemanticKITTI dataset is shown in Figure 1.

As mentioned in Section 3.2 of the main paper, we lin-
early combine softmax entropy, color discontinuity, and
structural complexity as region information score. For
color discontinuity and structural complexity, we calculate



color differences and surface variation for each point and
its k-nearest neighbors (k = 50 in both datasets). As for
the weight of the linear combination of these three terms,
which is described in Eq. 4 of the main paper, we set
α = 1, β = 0.1, γ = 0.05 for S3DIS dataset and α =
1, β = 0, γ = 0.05 for SemanticKITTI dataset. Note that
the value α = 1.0, β = 0.1, γ = 0.05 is empirically decided
for we found that model uncertainty is much more impor-
tant than the color discontinuity and structural complexity
terms. In addition, since the SemanticKITTI dataset does
not have point-by-point color information, we set β = 0 for
the dataset.

1.3. Diversity-aware Selection

As explained in Section 3.3 of the main paper, we mea-
sure the similarity of these regions by clustering their cor-
responding region features. We set the number of clus-
ters of all regions M = 400, 150 for the S3DIS and Se-
manticKITTI datasets, respectively. For both datasets, we
set the decay rate η = 0.95. Note that our diversity-aware
selection algorithm does not create too much computational
burden. On the SemanticKITTI dataset, our diversity-aware
selection algorithm only takes only 0.58 ms per region on
average.

Note that we empirically found that k in k-nn (mentioned
in the previous sub-section), decay rate η and the number
of clusters M is not sensitive to the experimental results,
where all values are determined via grid search.

2. Baseline Active Learning Methods
In this section, we describe the implementation of the

baseline active learning methods used in our experiments.

Random selection (RAND) Randomly select a portion of
point cloud scans in the unlabeled dataset for label acquisi-
tion. The strategy is commonly used as the baseline for
active learning methods [11, 5, 8, 6].

Margin sampling (MAR) Some previous active learning
methods query instances with the smallest model decision
margin, which is the predicted probability difference be-
tween the two most likely class labels [11]. As shown in
Eq. 1, given a point cloud scan X with N points and fixed
model parameter θ, we calculate the difference between the
two most likely class labels for all points and produce the
score for a point cloud scan (SMAR) by averaging the value
of all points in a scan. After that, we select a portion of point
cloud scans with the largest score in the unlabeled dataset
for label acquisition.

SMAR =
1

N

N∑
n=1

P (ŷ1n|X; θ)− P (ŷ2n|X; θ), (1)

where ŷ1n is the first most probable label class and ŷ2n is the
second most probable label class.

Least confidence sampling (CONF) Many previous ac-
tive learning methods query the sample whose prediction
has the least confidence [11, 12]. As can be observed in Eq.
2, given a point cloud scan X with N points and fixed model
parameter θ, we calculate the confidence of predicted class
label (ŷ1n) for all points and produce the score for a point
cloud scan (SCONF ) by averaging the value of all points in
a scan. After that, we select a portion of point cloud scans
with the least confidence score in the unlabeled dataset for
label acquisition.

SCONF =
1

N

N∑
n=1

P (ŷ1n|X; θ) (2)

Softmax entropy (ENT) Entropy is an indicator to mea-
sure the information of a probability distribution in the in-
formation theory [9]. Some previous active learning ap-
proaches query samples with the highest entropy value in
the predicted probability [11]. As shown in Eq. 3, given a
point cloud scan X with N points and fixed model param-
eter θ, we calculate the softmax entropy value for all points
and produce the score for a point cloud scan (SENT ) by av-
eraging the value of all points in a scan. After that, we select
a portion of point cloud scans with the largest entropy in the
unlabeled dataset for label acquisition.

SENT = − 1

N

N∑
n=1

c∑
i=1

P (yin|X; θ) logP (yin|X; θ), (3)

where c represents the total number of labels, and
P (yin|X; θ) represents the probability that the model pre-
dicts point n as class i.

Core-Set (CSET) Sener et al. [8] proposed a purely
diversity-based deep active selection strategy named Core-
Set. The strategy aims to select a small subset so that a
model trained on the selected subset has a similar perfor-
mance to that trained on the whole dataset. The method first
extracts the feature of each sample. Then, it selects a small
number of samples from the unlabeled dataset that is the
furthest away from the labeled dataset in the feature space
for label acquisition. In the implementation, we choose the
middle layer of the encoder-decoder network as the feature.

Segment entropy (SEGENT) Lin et al. [6] proposed seg-
ment entropy to measure the point cloud information in the
deep active learning pipeline. This method assumes that



each geometrically related area should share similar seman-
tic annotations. Therefore, it calculates the entropy of the
distribution of predicted labels in a small area to estimate
model uncertainty.

MC-Dropout (MCDR) [4, 5] combined Bayesian active
learning with deep learning, which estimated model un-
certainty by Monte Carlo Dropout. In the implementa-
tion, we set the dropout rate to 0.3 and perform 10 dropout
predictions. Note that since there is no dropout layer in
MinkowskiNet [3], we did not compare with this baseline
when using MinkowskiNet.

3. Experimental Result
Due to space limitations, we show the original experi-

mental results here, which are shown in the line charts of
the main paper. Table 1, 2, 3, 4 shows the original data of
Figure 5 in the main paper. Table 5, 6 present the original
data of Table 1, 2 in the main paper.



% Labeled Data RAND MAR CONF ENT CSET SEGENT MCDR ReDAL (Ours)
init. 27.05 28.29 28.60 27.92 28.89 29.16 28.33 27.86

5 31.39 30.07 32.14 31.02 33.24 34.55 29.30 41.27
7 35.37 31.34 33.76 35.10 36.59 40.97 33.68 47.68
9 40.51 33.30 38.57 40.90 37.02 42.30 40.00 52.34

11 44.50 39.75 40.60 41.51 41.42 43.07 41.65 54.28
13 46.28 40.41 42.43 43.42 41.34 44.48 44.04 57.01
15 49.02 40.45 44.44 45.06 41.40 45.04 45.06 57.97

Table 1. Results of IoU performance (%) on S3DIS [1] with SPVCNN [10].

% Labeled Data RAND MAR CONF ENT CSET SEGENT ReDAL (Ours)
init. 26.59 25.20 25.52 26.60 25.60 26.30 25.63

5 30.22 25.87 27.81 27.60 35.58 26.66 39.45
7 34.76 32.40 30.25 28.91 38.88 30.45 44.29
9 38.79 36.20 32.23 35.40 40.41 39.72 50.50

11 43.80 41.31 38.39 37.10 41.28 41.95 55.11
13 46.13 42.28 42.10 37.42 43.63 44.66 56.14
15 48.57 43.15 42.18 40.37 47.26 45.79 57.26

Table 2. Results of IoU performance (%) on S3DIS [1] with MinkowskiNet [3].

% Labeled Data RAND MAR CONF ENT CSET SEGENT MCDR ReDAL (Ours)
init. 41.84 42.39 42.98 41.90 42.19 43.18 42.92 41.87

2 45.41 46.84 46.31 45.57 46.98 47.89 47.57 51.70
3 52.19 49.55 50.15 51.42 52.93 52.60 50.08 55.83
4 54.76 51.66 54.46 51.85 54.57 53.60 53.56 56.86
5 56.89 53.21 55.41 56.45 56.45 54.00 54.40 58.18

Table 3. Results of IoU performance (%) on SemanticKITTI [2] with SPVCNN [10].

% Labeled Data RAND MAR CONF ENT CSET SEGENT ReDAL (Ours)
init. 37.74 38.20 37.32 37.33 36.86 37.75 37.48

2 42.74 42.73 42.01 42.16 41.25 42.62 48.88
3 48.82 45.07 47.37 45.77 45.15 49.51 55.30
4 52.51 47.84 49.54 49.46 49.93 51.87 58.35
5 54.67 51.27 53.49 52.34 51.89 53.12 59.76

Table 4. Results of IoU performance (%) on SemanticKITTI [2] with MinkowskiNet [3].
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Full 61.4 95.9 20.4 63.9 70.3 45.5 65.0 78.5 0.4 93.5 50.6 82.0 0.2 91.2 63.8 87.2 68.5 74.3 64.4 50.1

RAND 54.7 94.7 9.5 45.0 66.8 38.6 52.0 47.8 0.0 90.2 38.5 76.1 1.8 88.3 55.5 87.9 64.0 76.5 60.2 45.6
ReDAL 59.8 95.4 29.6 58.6 63.4 49.8 63.4 84.1 0.5 91.5 39.3 78.4 1.2 89.3 54.4 87.4 62.0 74.1 63.5 49.7

Table 5. Results of IoU performance (%) with only 5% labeled points. The table shows that our ReDAL achieve better results on most
classes compared with baseline random selection. For some classes of small items and objects with complex boundaries, our ReDAL
greatly surpass the random selection baseline and even outperform fully supervised result, such as bicycle and bicyclist.
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Full 103 43.68 0.17 0.41 2.02 2.40 0.36 0.13 0.04 205.22 15.19 148.59 4.03 137.00 74.69 275.57 6.23 80.67 2.95 0.63

RAND 103 43.89 0.14 0.34 3.51 2.12 0.42 0.11 0.05 206.86 14.07 147.32 4.02 137.63 74.47 274.47 6.21 80.54 3.02 0.73
ReDAL 103 33.71 0.25 0.51 8.01 11.36 1.27 0.21 0.07 168.16 20.15 145.77 16.92 132.22 78.68 252.65 9.25 114.45 4.48 1.87

Table 6. Labeled Class Distribution Ratio (‰). With limited annotation budgets, our active method ReDAL queries more labels on small
objects like person and bicycle but less on large uniform areas like road and vegetation. The selection strategy can mitigate the label
imbalance problem and improve the performance on more complicated object scenes without hurting much on large areas as shown in
Table 5.
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