
Task-aware Part Mining Network for Few-Shot Learning

Jiamin Wu, Tianzhu Zhang∗, Yongdong Zhang, Feng Wu
University of Science and Technology of China

jiaminwu@mail.ustc.edu.cn, {tzzhang, zhyd73, fengwu}@ustc.edu.cn

In the supplementary material, we first introduce more
details of our framework. Then, we introduce more im-
plementation details, including the details of the datasets,
the pre-training strategy, and the hyper-parameters on the
four datasets for reproducing the results. Afterwards, we
show more visualization results on the part masks learned
by TPMN. Finally, we discuss the differences between the
proposed TPMN and the relevant methods. The overall ar-
chitecture of the proposed model is presented in Figure 1.

1. More Details of Our Framework
In this section, we introduce the complete architecture of

the meta filter learner and task-aware part filters (see Fig-
ure 2). As a 1 × 1 convolution kernel, the parameter set of
the part filter is comprised of the kernel weight parameters
and kernel bias parameters. The main text only presents the
formulation of the kernel weight, for the simplicity of the
notation. To generate the bias parameter of task-aware part
filter, the meta filter learner Gp includes an additional bias
generator gb apart from the weight generators {gp

i }ki=1 that
are introduced in the main text, i.e., Gp = {{gp

i }ki=1,g
b}.

The bias generator gb takes the task embedding eT as in-
put, and predicts the bias parameters of part filters for the
current task T . Denote the parameters of gb as θb, the bias
parameter set bT of task-aware part filters can be derived as

bT = gb(eT ; θb), (1)

where bT ∈ Rk. The i-th dimension of the bias parameter
set bT is the bias parameter of the i-th task-aware part filter,
i = 1, 2, · · · , k. In this way, the meta filter learner Gp can
produce task-aware part filters that can discover multiple
task-specific local parts. Similar with the architecture of
the weight generators, the bias generator gb consists of two
fully connected layers, with the first layer followed by a
ELU activation layer.

2. More Implementation Details
In this section, we provide more implementation details

of our proposed TPMN. Specifically, we present more de-
∗Corresponding Author

tails of the dataset, the pre-training strategy, and hyper-
parameters used to reproduce results.

2.1. More Dataset Details.

To demonstrate the effectiveness of the proposed model,
we conduct experiments on four standard datasets in-
cluding: miniImageNet [13], tieredImageNet [9], CIFAR-
FS [1], and Fewshot-CIFAR100 (FC100) [7]. Here, we in-
troduce more details of these four datasets. As shown in
Table 1, we list details for the number of images, the num-
ber of classes, image resolution and train/val/test splits.
MiniImageNet [13] is a widely used benchmark dataset for
FSL. There are 100 categories with 600 samples per cate-
gory chosen from the ILSVRC-2012 [11]. The size of each
image is 84 × 84. Following the split in [8], these cate-
gories are randomly split into 64 training classes, 16 valida-
tion classes and 20 test classes.
TieredImageNet [9] is a larger subset of ILSVRC-12, con-
taining 608 classes from 34 super-classes and 779,165 im-
ages in total. We split it into 20/351 training classes, 6/97
validation classes and 8/160 test classes, as in [9]. The splits
are set according to the super-classes to enlarge the domain
difference between the training and testing sets. All images
of the two datasets are resized to 84× 84.
CIFAR-FS [1] is built upon CIFAR100 [6] and contains
100 classes. These classes are split into 64, 16 and 20
classes for training, validation, and testing, respectively,
following the criteria of previous work in [1]. There are
600 samples per class and the resolution of every image is
32× 32.
FC100 [7] is also derived from CIFAR100 [6], which con-
tains 100 classes grouped into 20 super-classes. We follow
the split division proposed in [7], where base, validation
and novel splits contain 60, 20, 20 classes belonging to 12,
5, and 5 super-classes, respectively. The image resolution
and the number of samples per class are the same as that of
CIFAR-FS dataset. It is worth noting that, compared with
CIFAR-FS, the class overlap in the partition of training set,
validation set and test set of FC100 is lower, because the
classes are selected from different superclasses. Therefore,
FC100 is a more challenging dataset than CIFAR-FS.

…

Query Image

Part Masks 𝑴𝒄

Part
Similarities

Support Image
from Class c

Meta Filter
Learner 𝑮𝑷

Pooling

H

𝑊
𝐶

𝐶

𝐻

𝑊

…

…

Feature Map 𝒙𝒒

Feature Map 𝒙𝒄
𝒔

Task-Aware
Part Filters 𝑷𝓣

Feature
Map 𝒙𝒒

Feature
Map 𝒙𝒔

…

GAP
Attention
Weights 𝒂

𝛀 (𝐪)

GAP

……Shared

GAP

Task Embedding 𝒆𝓣

𝒙𝒄
𝒔

𝒙𝟏
𝒔

𝒙𝑵
𝒔

…

Generate

Generate

Adaptive Importance
Generator 𝑮𝒂

Similarity
Score 𝝓

Feature
Extractor

𝝋

Feature
Extractor

𝝋

Task-Aware Part Filter Module Part-Aware Metric Module

⨀

⨀ ⨂

⨂

⨁

Concatenation⨁
⨀ 𝟏 × 𝟏 Convolution

Element-Wise Multiplication⨂
GAP: Global Average Pooling

𝓛𝒄𝒍𝒔

𝓛𝒅𝒊𝒗

𝛀 (𝐜)

Part-Aware Features

Part Masks 𝑴𝒒

…Other Support
Samples in the

Task 𝒯

…

Figure 1. The architecture of our method (illustrated in the 1-shot setting): (1) The task-aware part filter module takes in the query and
support images to extract their feature maps. Then the meta filter learner Gp produces the task-aware part filters PT conditioned on the
task embedding. PT are used to generate multiple part masks for each image. (2) The part-aware metric module firstly computes the part
similarities, which are then weighted by the importance weights produced by the adaptive weight generator for the final similarity score.

GAP

Task Embedding
𝒆𝓣

𝒙𝟏
𝒔

𝒙𝒄
𝒔

𝒙𝑵
𝒔

…

Support Samples
in the Task 𝓣

…

𝐩𝟏
𝓣 𝐩𝟐

𝓣 𝐩𝒌
𝓣

…

Task-Aware Part Filters

𝐠𝟏
𝒑 …𝐠𝟐

𝒑
𝐠𝒌
𝒑

𝐠𝒃

𝒃𝓣

Figure 2. The illustration of the meta filter learner Gp. Gp con-
sists of a sequence of weight generators {gp

i }
k
i=1 and a bias gen-

erator gb, which generate the kernel weight parameters and kernel
bias parameters of the corresponding task-aware part filters, re-
spectively.

Dataset Images Classes Train-val-test Resolution
MiniImageNet 60000 100 64/16/20 84×84
TieredImageNet 779165 608 351/97/160 84×84
CIFAR-FS 60000 100 64/16/20 32×32
FC100 60000 100 60/20/20 32×32

Table 1. The details of benchmark datasets used in FSL.

2.2. Pre-training Strategy.

Instead of optimizing from scratch, we apply a pre-
training strategy for the backbone φ to accelerate the train-
ing process, as suggested in [12, 15]. We adopt ResNet-12
as the backbone network for feature extraction. During the

pre-training, the global average pooling layer of the back-
bone network is preserved, and is appended with a softmax
layer. Then the backbone is trained by all the SEEN classes
(e.g., 64 classes in the miniImageNet) in the training set
with a cross-entropy loss. The feature embeddings of the
penultimate layer of the backbone are utilized to evaluate
the classification performance. The evaluation is conducted
on multiple randomly sampled 1-shot tasks from the valida-
tion set. Then the best pre-trained model is selected and is
used to initialize the feature extractor backbone φ in TPMN.

2.3. Hyper-parameters on Different Datasets.

We introduce more detailed hyper-parameters on differ-
ent datasets, for the convenience of reproducing the results.
The number of the part masks, denoted as Nf , is set as dif-
ferent values on different datasets.

On the miniImageNet Dataset:

• The evaluation frequency is 50 episodes.

• Base learning rate is 0.0001.

• The weight decay in SGD optimizer is 5e-4.

• The loss coefficient λdiv of part diversity loss Ldiv is
set as 0.1.

• The number of the part masks Nf is set as 15 in 1-shot
setting.

• The number of the part masks Nf is set as 20 in 5-shot
setting.

(a)

(c)

(b)

(d)

Figure 3. The visualization of the learned local parts (taking five local parts as examples) of two pairs of support and query images. Each
pair of images is from the same class. We can observe the explicit semantic correspondence between the local parts.

• The number of training epoch is 300.

On the tieredImageNet Dataset:

• The evaluation frequency is 50 episodes.

• Base learning rate is 0.0001.

• The weight decay in SGD optimizer is 5e-4.

• The loss coefficient λdiv of part diversity loss Ldiv is
set as 0.1.

• The number of the part masks Nf is set as 10 in 1-shot
setting.

• The number of the part masks Nf is set as 17 in 5-shot
setting.

• The number of training epoch is 300.

On the FC100 Dataset:

• The evaluation frequency is 25 episodes.

(a)

(b)

(c)

Figure 4. The visualization of the local parts and their normalized importance weights (normalizing the maximum importance weight to 1)
in a pair of query and support images. Larger weights are assigned to the more discriminative parts.

with
ℒ𝒅𝒊𝒗

w/o
ℒ𝒅𝒊𝒗

Figure 5. The part visualizations with Ldiv and without Ldiv .

• Base learning rate is 0.00017.

• The weight decay in SGD optimizer is 5e-4.

• The loss coefficient λdiv of part diversity loss Ldiv is
set as 2.4.

• The number of the part masks Nf is set as 10 in 1-shot

NT 50 500 1000 2000 3000 6000
TPMN 65.20 66.10 66.42 66.93 67.22 67.64

Table 2. The effect of number of tasks (NT) on miniImageNet in
5w-1s setting. We utilize the pre-trained ResNet-12.

setting.

• The number of the part masks Nf is set as 10 in 5-shot
setting.

• The number of training epoch is 300.

On the CIFAR-FS Dataset:

• The evaluation frequency is 25 episodes.

• Base learning rate is 0.0002.

• The weight decay in SGD optimizer is 5e-4.

• The loss coefficient λdiv of part diversity loss Ldiv is
set as 1.0.

• The number of the part masks Nf is set as 13 in 1-shot
setting.

• The number of the part masks Nf is set as 15 in 5-shot
setting.

• The number of training epoch is 300.

3. The Effects of the Number of Tasks
We study the effects of the number of training tasks (de-

noted as NT) on miniImageNet in 5-way 1-shot setting. As
shown in Table 2, as more tasks are trained, the performance
is gradually improving, with the accuracy increasing from
65.20 to 67.64. This verifies that meta filter learner is im-
proved during the training on large amounts of tasks. The
meta filter learner learns how to produce part filters that best
fit the needs of the current task by meta-learning on the nu-
merous training tasks.

4. More Visualization Results
Here, we give more visualization results of the learned

part masks on miniImageNet and tieredImageNet. First, we
visualize the part correspondences between the part masks
from the query and support images. Four groups of results
are presented, and the images in each group are from the
same category. As shown in Figure 3, there are clear se-
mantic correspondences between the part masks obtained
from the same task-aware part filter, which justifies the ef-
fectiveness of our task-aware part filters. Also, we provide
more visualization results of the part importance weights to

testify the effectiveness of the adaptive importance gener-
ator Ga. We use the min-max normalization to normalize
the maximum importance weights to 1. The normalized im-
portance weights along with the matched part masks of the
query and support image are shown in Figure 4. It can be
observed that the discriminative and well-matched parts are
assigned with larger importance weights. On the contrary,
the local parts that contain too many background noises en-
joy smaller importance weights. Besides, we provide the
comparisons of part visualizations with the part diversity
loss Ldiv and the visualizations without Ldiv . As shown in
Figure 5, without Ldiv , all parts gather in similar regions,
ignoring other fine-grained local regions that also provide
discriminative clues. However, Ldiv can help discover di-
verse and complementary parts, which improves the transfer
and generalization abilities of our method.

5. Discussion
In this section, we discuss the differences between

TPMN and several relevant methods including ATL-
Net [2], TAFE-Net [14], CNAPs [10], and some attention-
based FSL methods including CAN [5], STANet [4] and
AWGIM [3].

(1) ATL-Net [2] proposes an episodic attention mecha-
nism to weight different key local patches based on the rela-
tionship between local patches. Their so-called “task-aware
local representations” are in fact the shared local patches
weighted by different coefficients. This is similar to our
design of assigning adaptive weights to the local represen-
tations. However, our method further takes into considera-
tion the categorical information to produce task-related lo-
cal representations that dynamically cover multi-scale re-
gions for different tasks. Compared with the fixed local
patches in ATL-Net that may contain considerable back-
ground noises, the local representations learned by our task-
aware part-filters are more flexible to satisfy the needs of
different tasks, even the tasks with unseen classes.

(2) TAFE-Net [14] and CNAPs [10] utilize a meta
learner to generate task-specific parameters for convolu-
tion layers and linear classification layers in the network,
which is similar to our idea of generating parameters in a
meta-learning way. However, both of them attempt to learn
a global image-level representation, which loses consider-
able local information. Unlike these methods, our method
mainly focuses on discovering task-aware local represen-
tation that enjoys favorable transferability and consistency
across different tasks.

(3) CAN [5] proposes a cross-attention module to local-
ize the regions of the target object for few-shot learning.
It utilizes the correlation map between each pair of query
and support samples to generate cross attention maps. CAN
learns single object-centric representation, while TPMN
learns the task-specific, complementary and transferable lo-

cal representations that can generalize better to the unseen
tasks. Similar to CAN, STANet [4] only localizes a single
object region by spatial attention. Also, STANet lacks the
task-aware ability to adapt the model to unseen tasks, while
TPMN can customize the task-aware part filters for novel
tasks. AWGIM [3] uses multi-head attention to model the
relations between samples within one task, while TPMN fo-
cuses on local part mining to obtain transferable local fea-
tures.

(4) Compared to the above methods, our TPMN utilizes
the meta-learning strategy to generate the part filers that
can discover discriminative local parts for the unseen tasks.
By taking advantage of the automatically-mined and task-
aware local representations, our method acquires fast adap-
tation and good generalization abilities across tasks.

References
[1] Luca Bertinetto, Joao F. Henriques, Philip Torr, and An-

drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations, 2019.

[2] Chuanqi Dong, Wenbin Li, Jing Huo, Zheng Gu, and Yang
Gao. Learning task-aware local representations for few-shot
learning. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence, 2020.

[3] Guo et al. Attentive weights generation for few shot learning
via information maximization. In CVPR, 2020.

[4] Yan et al. A dual attention network with semantic embedding
for few-shot learning. In AAAI, 2019.

[5] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan,
and Xilin Chen. Cross attention network for few-shot clas-
sification. In Advances in Neural Information Processing
Systems, pages 4003–4014, 2019.

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[7] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Advances in Neural Information Pro-
cessing Systems, volume 31, pages 721–731, 2018.

[8] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International Conference on Learn-
ing Representations, 2017.

[9] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations, 2018.

[10] James Requeima, Jonathan Gordon, John Bronskill, Sebas-
tian Nowozin, and Richard E Turner. Fast and flexible
multi-task classification using conditional neural adaptive
processes. In Advances in Neural Information Processing
Systems, pages 7959–7970, 2019.

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[12] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-
sell. Meta-learning with latent embedding optimization.
In International Conference on Learning Representations,
2019.

[13] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, pages
3630–3638, 2016.

[14] Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and
Joseph E Gonzalez. Tafe-net: Task-aware feature embed-
dings for low shot learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019.

[15] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8808–8817, 2020.

