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Abstract
This supplementary material includes:

* GAN inversion examples of our method in Sec. 1.

* Ablation study on GAN inversion losses in Sec. 2.

* Comparisons with SOTA GAN inversion method DGP [2] in Sec. 3.
* More diverse colorization results in Sec. 4

» User study results in Sec. 5.

1. GAN Inversion Results

We show the GAN inversion results in Fig. 1. It is observed that the GAN inversion could generate colorful images that
share the similar semantic contents to the gray inputs.
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Figure 1: Visual results of BigGAN inversion. It is observed that the GAN inversion could generate colorful images that
share the similar semantic contents to the gray inputs. Left Column: input gray-scale images. Middle Column: the GAN
inversion results. Right Column: ground-truth colorful images.



2. Ablation Study of BigGAN Inversion

Despite great success of GAN inversion in StyleGAN[7], optimizing an encoder-based BigGAN inversion model is still a
challenging task [1, 2]. Simply optimizing the latent code z leads to large Ly norm of latent code z and low-quality inverted
images. We conjecture that this is because the self-attention architecture in BigGAN brings optimization challenges. To
tackle this issue, we directly add an extra Lo norm penalty to the latent code and empirically found that it could alleviate
this issue and generate plausible inversion results. Besides, We also employ the discriminator feature loss L;p,_fsr instead
of the perceptual loss trained on classification task, since the feature space of pretrained discriminator is more coherent with
that of inversion images. Recently important progress has been achieved in StyleGAN inversion task, some useful tricks
are introduced to generate high-quality inversion images. However, not all of those useful tricks are suitable for BigGAN,
e.g., we found in practice that the domain-guided encoder introduced in [7] will not bring benefits in BigGAN. Hence, the
inversion of the encoder-based BigGAN still remains a challenge.

In addition to the discriminator feature loss and L, norm scheme, we also make some attempts to improve BigGAN
inversion but their results are no better than the aforementioned method. Those attempts include adopting more discriminator
layers to calculate the feature loss and introducing pixel loss. The comparisons of these attempts can be found in Fig. 2. It is
observed that neither adding more discriminator layers nor introducing the pixel loss will generate better inversion images,
but result in blurry images with fewer details.
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Figure 2: Ablation study of loss functions in BigGAN inversion. L4 .7 denotes using more discriminator layers (i.e., the
last 7 layers) to calculate the feature loss. L4;53 denotes using the last 3 discriminator layers to calculate the feature loss.
Lais3 + Lpie denotes using the last 3 discriminator layers and pixel loss. It is observed that neither adding more discriminator
layers nor introducing the pixel loss will generate better inversion images, but result in blurry images with fewer details.
Therefore, we choose L3 as our default setting.



3. Comparison with GAN Inversion

As GAN inversions also incorporate pretrained GANs as a prior to guide the colorization process, we further compare the
results of our method against results of a GAN inversion method - DGP [2]. Selected representative cases are presented in
Figure 3 for a qualitative comparison. As shown in the figure, we can observe that color boundaries are not clearly separated
in the results of DGP. The blurred color boundaries produced by DGP are inevitable considering the information loss during
GAN inversion process. The low-dimensional latent codes generated in DGP fail to encode the spatial information in the
image, thereby DGP is neither capable of retaining the local details nor preserving the shape of objects. On the other hand,
our method, which employs a SPADE modulation to incorporate the spatial features, has obtained better results in terms of
texture faithfulness. Apart from improving colorization quality, our method also reduces the computational cost by adopting
straightforward feed-forward inference to avoid iterative optimization training process used in DGP.

Figure 3: Comparisons with DGP.

4. More Diverse Colorization Results

In this section, we provide comparisons of diverse colorization with stochastic sampling based method PIC [3]. PIC
adopts an autoregressive network PixelCNN to model the full joint distribution of pixel color values, by sampling from this
distribution, diverse colorizations can be obtained. As shown in Fig. 4 and Fig. 5, PIC usually generates spatially incoherent
and unrealistic colorization results. On the contrary, our method does not suffer from these issues. Besides, our method
could attain smooth and controllable colorizations.
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Figure 4: Comparisons of diverse colorization with PIC (First row: PIC; Second row: Ours). Zoom in to see the spatially
incoherent and unrealistic colorizations from PIC. Our method could generate spatially coherent and more natural colorization
results with smooth control.



DId

smQ

Dld

simQ

Old

siQ

DId

smQ

Figure 5: Comparisons of diverse colorization with PIC (First row: PIC; Second row: Ours). Zoom in to see the spatially
incoherent and unrealistic colorizations from PIC. Our method could generate spatially coherent and more natural colorization
results with smooth control.



S. User study results

We show some cases from our user study in Fig. 6 - 29. Our method got a significant preference by users than other col-
orization methods (CIC [6], ChromaGAN [5], DeOldify and InstColorization [4]), showing distinct advantage on producing
natural and vivid results.

Figure 6: User preferences for different methods.
From column 2-6: 10%(CIC) : 3%(ChromaGAN) : 13%(DeOldify) : 3%(InstColor) : 70%(Ours).
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Figure 7: User preferences for different methods.
From column 2-6: 10%(CIC) : 7%(ChromaGAN) : 23%(DeOldify) : 10%(InstColor) : 50%(Ours).

Figure 8: User preferences for different methods.
From column 2-6: 3%(CIC) : 3%(ChromaGAN) : 30%(DeOldify) : 3%(InstColor) : 60%(Ours).

Figure 9: User preferences for different methods.
From column 2-6: 7%(CIC) : 10%(ChromaGAN) : 20%(DeOldify) : 10%(InstColor) : 53%(Qurs).



Figure 10: User preferences for different methods.
From column 2-6: 0%(CIC) : 7%(ChromaGAN) : 0%(DeOldify) : 23%(InstColor) : 70%(Ours).

Figure 11: User preferences for different methods.
From column 2-6: 7%(CIC) : 13%(ChromaGAN) : 17%(DeOldify) : 23%(InstColor) : 40%(Ours).

Figure 12: User preferences for different methods.
From column 2-6: 0%(CIC) : 13%(ChromaGAN) : 3%(DeOldify) : 33%(InstColor) : 50%(Ours).

Figure 13: User preferences for different methods.
From column 2-6: 17%(CIC) : 10%(ChromaGAN) : 27%(DeOldify) : 0%(InstColor) : 47%(Ours).

Figure 14: User preferences for different methods.
From column 2-6: 7%(CIC) : 7%(ChromaGAN) : 0%(DeOldify) : 27%(InstColor) : 60%(Ours).



Figure 15: User preferences for different methods.
From column 2-6: 3%(CIC) : 7%(ChromaGAN) : 13%(DeOldify) : 3%(InstColor) : 73%(Ours).

Figure 16: User preferences for different methods.
From column 2-6: 13%(CIC) : 7%(ChromaGAN) : 0%(DeOldify) : 0%(InstColor) : 80%(Ours).

Figure 17: User preferences for different methods.
From column 2-6: 7%(CIC) : 13%(ChromaGAN) : 17%(DeOldify) : 10%(InstColor) : 53%(Qurs).
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Figure 18: User preferences for different methods.
From column 2-6: 7%(CIC) : 0%(ChromaGAN) : 20%(DeOldify) : 0%(InstColor) : 73%(Qurs).

Figure 19: User preferences for different methods.
From column 2-6: 3%(CIC) : 0%(ChromaGAN) : 23%(DeOldify) : 13%(InstColor) : 60%(Ours).



Figure 20: User preferences for different methods.
From column 2-6: 0%(CIC) : 13%(ChromaGAN) : 13%(DeOldify) : 0%(InstColor) : 73%(Ours).

Figure 21: User preferences for different methods.
From column 2-6: 13%(CIC) : 0%(ChromaGAN) : 10%(DeOldify) : 13%(InstColor) : 63%(Ours).

Figure 22: User preferences for different methods.
From column 2-6: 0%(CIC) : 30%(ChromaGAN) : 0%(DeOldify) : 0%(InstColor) : 70%(Qurs).

Figure 23: User preferences for different methods.
From column 2-6: 0%(CIC) : 10%(ChromaGAN) : 7%(DeOldify) : 0%(InstColor) : 47%(Qurs).

Figure 24: User preferences for different methods.
From column 2-6: 3%(CIC) : 43%(ChromaGAN) : 0%(DeOldify) : 7%(InstColor) : 83%(Ours).



Figure 25: User preferences for different methods.
From column 2-6: 7%(CIC) : 0%(ChromaGAN) : 3%(DeOldify) : 10%(InstColor) : 80%(Ours).

Figure 26: User preferences for different methods.
From column 2-6: 10%(CIC) : 3%(ChromaGAN) : 0%(DeOldify) : 0%(InstColor) : 87%(Ours).
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Figure 27: User preferences for different methods.
From column 2-6: 10%(CIC) : 23%(ChromaGAN) : 3%(DeOldify) : 0%(InstColor) : 63%(Ours).

Figure 28: User preferences for different methods.
From column 2-6: 17%(CIC) : 7%(ChromaGAN) : 3%(DeOldify) : 3%(InstColor) : 70%(Qurs).

Figure 29: User preferences for different methods.
From column 2-6: 17%(CIC) : 13%(ChromaGAN) : 13%(DeOldify) : 3%(InstColor) : 53%(Ours).
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