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1. Dataset Visualizations and Details
We show captions with spatial connectors and their cor-

responding images in Figure 1 to illustrate the richness of
part interactions contained within our dataset. Please refer
to the accompanying samples.html for samples from
our dataset that are used for training. These are grouped
according their concepts.

Data distributions. Figure 2 shows the distribution of cap-
tions by the number of words. Figure 3 shows the number of
data samples by landmark identity sorted by size. Figure 4
shows the number of captions in the top 10 languages. The
caption’s language is detected according to [8].

2. Implementation Details
2.1. Dataset construction

We use COLMAP [11] version 3.6 for building 3D re-
constructions. The SIFT [6] peak threshold is set to 0.03. To
find image matches, we use vocabulary tree matching [12]
using the pretrained vocabulary tree with 1M visual words.
For landmarks that have reconstructions in the MegaDepth
dataset [5] (we have 44 shared landmarks), external images
from their dataset were added to assist reconstruction. Origi-
nal high resolution images are used for reconstruction. How-
ever, for training purposes, we use resized images with the
shorter dimension set to 200 pixels. We also release a higher
resolution version in our dataset, where the longer dimension
is set to 1200 pixels.

2.2. Network architecture

Figure 5 shows the structure of our network. The struc-
ture closely follows the network proposed in Araslanov et
al. [1]. For completeness, we briefly summarize the network
architecture here. We use a Resnet-50 backbone to extract
both low-level and high-level features (which is pretrained
on ImageNet). Atrous Spatial Pyramid Pooling (ASPP) [2]
augments the ResNet features by gathering information at
different scales. A Global Cue Injection (GCI) module [1]
infuses global cues from deep layers into low-level features
derived from the shallow layers of ResNet. The stochastic
gate [1] aims to mitigate overfitting introduced by errors
in the pseudo-ground truth used during training. The 3D
consistency loss is computed on the features before unnor-
malized score maps are computed. The classification score y
is computed according to [1], summing a normalized Global
Weighted Pooling (nGWP) term and a focal penalty term
(Equation 3 and Equation 5 in their paper).

2.3. Training details

Our models are implemented in PyTorch [9]. We train
our model using the Adam optimizer [4] with weight decay
5× 10−4, and using default Adam parameters. The model
is trained for 25 epochs with learning rate decay occurring
at the 15th and 20th epoch. Following [1], we pretrain the
model without Lpix

cls for 5 epochs. In all our experiments,
learning rate decay is performed using a factor of 0.1. For all
experiments with L3D, the balancing coefficient is set to 0.3
(i.e., the 3D constrastive loss is multiplied by this coefficient).
The temperature used in the 3D constrastive loss is set to the
default value of 0.07 and the number of negatives is 16. All
models are pretrained on ImageNet.

As the images in WikiScenes are of varying resolution,
we perform a random resized crop operation to convert each
image to [224× 224] training samples. The scale factor of
the random resized crop is sampled from the range [0.9, 1.0].
Random horizontal flipping and color jittering are also per-
formed to augment the data. The brightness, contrast, sat-
uration and hue parameters are set to [0.3, 0.3, 0.3, 0.1], re-
spectively, in the color jittering step. We balance the size
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Figure 1: Example images from WikiScenes. Corresponding captions are: (a) Altar behind the main quire at Southwark Cathedral. (b)
Bishop Gregorio Modrego over his tomb in cathedral of Barcelona, by Fredric Marès. (c) Went to the top of the bell tower to see the views
looking over the city of Vienna. (d) The choir of Christ Church Cathedral in Dublin, Ireland, looking east towards the sanctuary. (e) Statues
above the main entrance of Canterbury Cathedral: (left to right) Augustine of Canterbury, Lanfranc, Anselm of Canterbury and Thomas
Cranmer. (f) The nave of Exeter Cathedral From the west end of the nave looking towards the crossing with its 17th century organ. (g)
Amiens, France: Fassade detail of the Cathedrale of Amiens, showing the right group of sculptures under the rosette window. (h) Salisbury
Cathedral Looking towards the West Front, from the Quire. (i) The Silbermann organ in Strasbourg cathedral, view from below with the nave
windows. (j) The Dome of St Paul’s Cathedral viewed from the river bank below the Millennium Bridge. (k) Sandstone pulpit next to the
north transept of Liverpool Anglican Cathedral. (l) Window with medieval glass painting behind the high altar in St. Stephen’s Cathedral,
Vienna.
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Figure 2: Distribution of image captions by number of words (y-
axis is plotted on a log scale).

of the different classes by resampling. The balanced dataset
contains roughly 900 images in each class.
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Figure 3: Number of images paired with textual descriptions by
landmarks (sorted). The y-axis is plotted on a log scale.

2.4. Additional 2D segmentation details

Our model predicts both image-level classification scores
(i.e., y, see Figure 5) and pixel-wise normalized segmenta-
tion score maps (i.e., ypix, see Figure 5) that also include a
background score, in addition to scores for each of the C
semantic concepts. Following [1], the background score is
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Figure 4: Number of captions in the top 10 languages. “Unknown”
denotes captions that are not recognizable, such as date, URL or
null strings.

.

weakened by a power function (set empirically to the 4th

power in our experiments). We first take the maximal value
in y to select the image-level label (we only consider im-
ages that contain a single label). Then, the 2D segmentation
mask is comprised of all pixels whose score corresponding
to the selected image-level concept surpasses that of the
(weakened) background score.

2.5. Additional 3D segmentation details

For each point in a 3D model, we first gather classification
scores from its 2D projection in different views. The scores
are averaged before applying softmax function to obtain
the classification score of the 3D point. Points with scores
higher than a predetermined threshold ϕ are considered fore-
ground, and the remaining points are considered ambiguous
and are therefore not rendered in our 3D visualizations. For
quantitative evaluation, we provide results for ϕ = 0.5 and
ϕ = 0.75. Our visualizations are rendered using a threshold
of ϕ = 0.5.

2.6. Caption-based image retrieval experiment

To perform the caption-based retrieval experiment, we
run the command for fine-tuning from the multi-task trained
model1. We define two new tasks, one for the baseline model
(that uses only original image-caption pairs) and another
for the 3D-augmented model (that also uses 3D-augmented
pairs). Both models are trained for 12 epochs, using their
(unmodified) configurations.

Regarding evaluation, to compute our proxy semantic
measure S, we followed their retrieval evaluation and con-
struct a batch of 1000 images from validation, however, in
our case, this batch includes all labeled images from un-

1Available here: https://github.com/facebookresearch/
vilbert-multi-task

seen images (774 images in total) and additional randomly-
selected unlabeled images. We use these labels for evaluating
whether or not the label of the retrieved images agree with
the label of the target image.

3. Ablation Study
We perform an ablation study to analyze our design

choices for the 3D-consistency regularization. We replace
our 3D contrastive loss with the following alternatives:

3D MSE loss. We compute a simple MSE loss between the
features of corresponding pixels:

LMSE
3D = ‖F (p)− F (p+)‖22.

3D Triplet loss. We select one negative pixel p− and com-
pute the following 3D loss:

Ltriplet
3D = max(0, ‖F (p)−F (p−)‖22−‖F (p)−F (p+)‖22+m),

where m is a margin value (set empirically to 3).

3D intra-image contrastive loss. In the main paper, we in-
troduce a 3D contrastive loss L3D(inter-image sampling),
where the negative pixels {p−i } are sampled from other im-
ages in the batch. We change the sampling strategy such that
all the negative pixels are selected from other regions in the
same image to obtain L3D(intra-image sampling). Specifi-
cally, the points p−i are sampled uniformly in I2, outside a
box of size [w / 4, h / 4] around p+.

Results are reported in Table 1. As illustrated in the table,
we can improve classification performance using a variety
of loss configurations. Our 3D contrastive loss, using both
inter-image and intra-image sampling strategies, yield the
most significant improvements.

Following prior work [1], our semantic classification loss
is composed of two terms, where Lcls

pix is a self-supervised
loss over pixelwise predictions that is applied starting at
the 6-th epoch. Classification performance is roughly the
same when this self-supervised loss is not used. Specifically,
mAP increases from 52.0 to 53.8 for WS-U and decreases
from 75.3 to 73.4 for WS-K. The gaps to the baseline model
mostly remain unchanged (3.3% improvement for WS-U
and 1.8% improvement for WS-K).

4. Additional Classification Results
Figure 6 shows a confusion matrix for our image classi-

fication model. We observe that many of the mistakes are
understandable, given the hierarchical nature of our data. For
example, both “tower” and “portal” are part of a “facade”,
and an “altar” is often placed inside a “chapel”.

To further explore the hierarchical structure of semantics
in our dataset, we associate images with ancestor labels by
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Figure 5: Our classification network architecture.

Test Set Model mAP facade window chapel organ nave tower choir portal altar statue

WS-K

Baseline (w/o 3D loss) 70.8 87.2 89.2 60.2 89.7 85.8 64.1 61.5 68.0 50.0 52.0
w/ LMSE

3D 71.4 86.4 88.3 53.1 89.4 86.1 65.7 62.0 69.7 52.5 60.3
w/ Ltriplet

3D 72.1 88.5 90.5 55.6 86.0 86.4 66.5 65.0 68.4 50.2 63.4
w/ L3D(intra-image sampling) 73.3 90.4 87.1 62.9 90.3 85.8 62.1 75.9 68.4 52.8 57.1
w/ L3D(inter-image sampling) 75.3 90.0 88.5 68.7 90.7 85.7 61.1 77.2 76.5 54.4 59.9

WS-U

Baseline (w/o 3D loss) 48.3 71.0 92.2 10.7 57.3 71.0 53.4 43.6 31.1 25.8 27.1
w/ LMSE

3D 49.5 70.6 94.3 10.9 61.8 73.7 50.8 40.9 41.3 21.6 28.9
w/ Ltriplet

3D 49.9 73.1 94.9 9.9 53.7 74.7 47.5 40.8 29.1 39.4 35.6
w/ L3D(intra-image sampling) 52.5 75.8 94.1 16.7 62.5 75.4 50.4 44.5 43.0 24.4 38.4
w/ L3D(inter-image sampling) 52.0 77.7 93.4 16.5 49.4 77.3 46.1 44.1 35.2 39.9 40.0

Table 1: Classification performance using different types of 3D-consistency regularizations. We report mean average precision (mAP), and
per distilled–concept average precision (AP). Please refer to Section 3 for more details on the different configurations. Performance is
reported on images from two different tests sets corresponding to known landmarks (WS-K) and unseen landmarks (WS-U). The best result
for each test set and column are highlighted in bold.

considering the concepts present in its hierarchy of WikiCat-
egories. Unlike prior works that require manually annotating
such hierarchical labels (e.g., [7]), we obtain these automat-
ically, leveraging the hierarchical structure of Wikimedia
Commons. In Figure 7, we visualize these hierarchical rela-
tionships. Many of these relationships can also be observed
from the confusion matrix of our model in Figure 6. We also
observe additional intuitive connections such as an image
associated with “window” also being associated with larger
structures such as “facade” and “nave”; a “statue” can be
placed on various structures, and so on.

Finally, to further validate the effectiveness of our 3D

Resnet-50 [3] MobileNetV2 [10]

Test Set w/o L3D w/ L3D w/o L3D w/ L3D

WS-K 68.5 73.9 77.1 79.6
WS-U 48.7 52.3 50.2 53.4

Table 2: Evaluating the effectiveness of our 3D contrastive loss on
off-the-shelf classification models. For each model, we report mAP.
The best results are highlighted in bold.

loss, we take off-the-shelf networks dedicated for classifi-
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Figure 6: Confusion matrix of our classification model on unseen
landmarks (the WS-U test set). Ground-truth concept labels cor-
respond to rows, and predicted concept labels to columns. Each
row is normalized such that a cell indicates the probability of a
classification given the ground-truth label.
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Figure 7: Associating images with labels and anscestor labels.
Above we visualize (in log scale) the co-occurrence of concepts as
labels and ancestor labels.

cation and repeat the experiment of testing classification
performance with and without our 3D contrastive loss. For
this experiment, all models are trained for 10 epochs with
a learning rate decay at the 6th epoch. Both Resnet-50 and
MobileNetV2 are pretrained on ImageNet.

Results are reported in Table 2. As illustrated in the table,
our 3D contrastive loss consistently boosts classification
performance, even for off-the-shelf models.
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Figure 8: Visualizing distances in feature space for unseen land-
marks. For each image pair, we select a random pixel in the left
image (marked in white) and visualize the distance to all other pix-
els from the selected pixel (marked in white) with and without our
3D contrastive loss. Warmer colors correspond to smaller distances.
As illustrated above, distances in feature space are more seman-
tically meaningful on the model trained with the 3D contrastive
loss (see, for instance, distances on the windows in the left pair).
Our model is also more robust against large motion and appearance
variations between the images (as illustrated on the right).

5. Additional Qualitative Results

We show additional image segmentation results on test
images from the WS-K test set in Figure 10 and Figure 11.
As illustrated in the figures, the model is more successful
with segmenting certain concepts, such as “tower”, “portal”
or “window”. Some concepts, such as “chapel” yield noisier
segmentation results. We show 3D segmentation results for
landmarks in WS-K in Figure 12.

We visualize the learned features for two image pairs in
Figure 8. As the figure illustrates, distances in feature space
are more semantically meaningful on the model trained with
the 3D contrastive loss. For example, only pixels on the
windows yield small distances using our model (left image
pair). Our model is also more robust against large motion
and appearance variations between the images.

We show additional caption-based image retrieval results
in Figure 9, mostly for images not-labeled with one of the
semantic concepts we compute according to the method
described in the main paper. As demonstrated in the figure,
the model can also align more generic semantic concepts
to our images. However, as we perform 3D-augmentations,
the model is less aware of appearance-based differences.
For example, see the bottom row in the figure, where the
retrieved images are not captured “at night”.
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“Neogothic portal of Our Lady’s Cathedral, Antwerp, by Jean Baptist van
Wint (1829-1906). The Cathedral of Our Lady is a Roman Catholic parish
church in Antwerp, Belgium.”

“York Minister across the roof-tops of York, UK.”

“York city walls pathway Looking towards Lendal Bridge and the Minster
beyond.”

“York Minster at night (2012)”

Figure 9: Retrieving images from captions of The Cathedral of
Our Lady and York Minister (landmarks not seen during training).
Above we show the top three retrievals next to the reference image
(left with black border) that corresponds to the query caption be-
neath. Note that this query image is not seen by the network—just
the caption—and so we only show this image for reference. In
the bottom row, we demonstrate that our model is less sensitive
to appearance-based descriptions—in this case, the retrieved im-
ages are not captured “at night”. This can be attributed to our 3D
augmentations, which are unaware of appearance changes (thus
allowing to focus on part-based scene semantics instead).
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Figure 10: 2D Segmentations on correctly classified unseen images, segmented as “portal”, “choir”, “tower”, “chapel” and “nave”.
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Figure 11: 2D Segmentations on correctly classified unseen images. Hightlighted pixels are segmented as “facade”, “altar”, “organ”,
“statue” and “window”.
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Notre-Dame de Strasbourg
(exterior)

Cathedral of Barcelona
(exterior)

Notre-Dame de Reims
(exterior)

Saint Isaac’s Cathedral
(exterior)

St. Stephen’s Cathedral
(exterior)

Amiens Cathedral (exterior) Santiago de Compostela
Cathedral (exterior)

St Paul’s Cathedral (exterior)

Notre-Dame de Paris
(exterior 1)

Notre-Dame de Paris
(exterior 2)

Ulm Minster (exterior) Duomo di Milano (interior)

Notre-Dame de Reims
(interior)

Cathédrale Saint-André de
Bordeaux (interior)

Saint Isaac’s Cathedral
(interior)

St. Stephen’s Cathedral
(interior)

Amiens Cathedral (interior) Metz Cathedral (interior) Notre-Dame de Paris
(interior)

León Cathedral (interior)

Figure 12: Segmenting 3D reconstructions. Above we show segmentation results for landmarks seen during training. 3D points not associated
with concepts are colored in gray. Color legend of segmented points: nave, chapel, organ, altar, choir, statue, portal, facade, tower, window.
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