
��	������	��� ����	��������

��

�
�

��

����
���	�������

� ����
��

�
��

�
��	��	��	����������

�

�	�
��

s

Figure 7: Cluster-based tokenizer that group pixels using
the K-Means centroids of the pixels in the semantic space.

A. Stage-wise model description of VT-ResNet
In this section, we provide a stage-wise description of the

model configurations for VT-based ResNet (VT-ResNet).
We use three hyper-parameters to control a VT module:
channel size of the output feature map C, channel size of
visual token CT, and the number of visual tokens L. The
model configurations are described in Table 11.

B. More visualization results
We provide more visualization of the spatial attention on

images from the LIP dataset in Figure 8.

C. Clustering-based tokenizer
To address this limitation of filter-based tokenizers, we

devise a content-aware WK variant of WA to form seman-
tic groups from X. The module is shown in Fig. 7. Our
insight is to extract concepts present in the current image
by clustering pixels, instead of applying the same filters re-
gardless of the image content. First, we treat each pixel as
a sample {Xp}HW

p=1 , and apply k-means to find L centroids,
which are stacked to form WK ∈ RC×L. Each centroid
represents one semantic concept in the image. Second, we
replace WA in Equation (1) with WK to form L semantic
groups of channels:

WK = KMEANS(X),

T = SOFTMAXHW (XWK)T X.
(6)

Pseudo-code for our K-means implementation is provided
in Listing 1, and can be summarized as: Normalize all
pixels to unit vectors, initialize centroids with a spatially-
downsampled feature map, and run Lloyd’s algorithm to
produce centroids.

1

2 def kmeans(X_nchw, L, niter):
3 # Input:
4 # X_nchw - feature map
5 # L - num token
6 # niter - num iters of Lloyd’s

7 N, C, H, W = X_nchw.size()
8 # Initialization as down-sampled X
9 U_ncl = downsample(X).view(N, C, L)

10 X_ncp = X_nchw.view(N, C, H*W) # p = h*w
11 # Normalize to unit vectors
12 U_ncl = U_ncl.normalize(dim=1)
13 X_ncp = X_ncp.normalize(dim=1)
14 for _ in range(niter): # Lloyd’s algorithm
15 dist_npl = (
16 X_ncp[..., None] - U_ncl[:, :, None, :]
17).norm(dim=1)
18 mask_npl = (dist_npl == dist_npl.min(dim=2)
19 U_ncl = X_ncp.MatMul(mask_npl)
20 U_ncl = U_ncl / mask_npl.sum(dim=1)
21 U_ncl = U_ncl.normalize(dim=1)
22 return U_ncl # centroids

Listing 1: Pseudo-code of K-Means implemented in
PyTorch-like language

Although this tokenizer efficiently models only concepts
in the current image, the drawback is that it is not designed
to choose the most discriminative concepts.

Stage Resolution VT-R18 VT-R34 VT-R50 VT-R101
1 56×56 conv7×7-C64-S2 → maxpool3×3-S2
2 56×56 BB-C64 ×2 BB-C64 ×3 BN-C256 ×3 BN-C256 ×3
3 28×28 BB-C128 ×2 BB-C128 ×4 BN-C512 ×4 BN-C512 ×4
4 14×14 BB-C256 ×2 BB-C256 ×6 BN-C1024 ×6 BN-C1024 ×23

5 16 VT-C512-L16
-CT1024 ×2

VT-C512-L16
-CT1024 ×3

VT-C1024-L16
-CT1024 ×3

VT-C1024-L16
-CT1024 ×3

head 1 avgpool-fc1000

Table 11: Model descriptions for VT-ResNets. VT-R18 denotes visual-transformer-ResNet-18. “conv7×7-C64-S2” denotes
a 7-by-7 convolution with an output channel size of 64 and a stride of 2. “BB-C64×2” denotes a basic block [14] with an
output channel size of 64 and it is repeated twice. “BN-C256×3” denotes a bottleneck block [14] with an output channel size
of 256 and it is repeated by three times. “VT-C512-L16-CT1024 ×2” denotes a VT block with a channel size for the output
feature map as 512, channel size for visual tokens as 1024, and the number of tokens as 16. We leave exploration of other
clustering methods like agglomerative clustering to future work.

Figure 8: Visualization of the spatial attention generated by a filter-based tokenizer. Red denotes higher attention values and
color blue denotes lower. Without any supervision, visual tokens automatically focus on different areas of the image that
correspond to different semantic concepts.

		���
		���	
���	
��	
�			��

	
��
����

����

��������
����

����

���

��

��

��

��

��

��

��

��

��

� ��� � ��� � ��� � ���� �� ���� �� ���� �� ����

��
�

�
��
�
�

�������

�����������������������

���
�� ���
���)��
���
���)���	 ������
��
������
�� �����������
��
 �����
�����!%�""# ������!%�""#
"����""# ��
����!�$(
���
��������� �����
���������

		���		���
	
���	
��	
�	

		��
	
��

����

����

��� ���� ����

����

����

%'

&

&"

&#

&%

&'

'

'"

'#

 " # % ' !

��
�

�
��
�
�

��
�	���
����

����������������������
	�	�

���
�� ���
���)��
���
���)���	 ������
��
������
�� �����������
��
 �����
�����!%�""# ������!%�""#
"����""# ��
����!�$(
���
��������� �����
���������

Figure 9: Our VTs (blue) significantly outperform baselines in the accuracy-parameter and accuracy-macs tradeoff.

