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A. Visible Lighting Conditions Used in Our Evaluation

We evaluate our method using five different visible lighting conditions that range from favorable (“well lit”) to challenging

(“shadows”, “mixed colors”, “overexposure”, and “low light”). Figure 9 illustrates and details how these different lighting
conditions are simulated from the RGB OLAT training images.
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Figure 9: The five visible lighting conditions used in our evaluations. (a) A well lit image is created by averaging equally
the four OLAT RGB images, using weights that avoid any under- or over-saturated pixels. (b) Picking a single OLAT image
at random produces an RGB input with strong cast shadows. (c) We simulate mixing different colored lights by picking two
OLAT images at random and remapping the color of each to a random color temperature in the range [1900K, 2900K] and
[TO00K, 20000 K], respectively, and then averaging them together. (d) Scaling the intensities of one of the OLAT images with
a random scale factor in the range [1.8,2.3] and then clipping the result yields an image with harsh lighting and saturated
intensities. (e) Adding Gaussian white noise to each pixel (o = 25 8-bit gray levels) simulates images captured under low
light conditions.

B. Additional Ablation Studies

The graphs in Figure 10 expand on the results shown in Figure 6 in the paper. They plot the mean angular error of the
estimated normals against the baseline for three of our five lighting scenarios, and for three different techniques: our network
modified to take only a single NIR input image (“NIR Only”), our network modified to take only a single RGB input image
(“RGB Only”), and our full network, which considers both. In each graph the magnitude of the lighting issue increases from
left to right.

Variations in illuminant color have a relatively small effect on the normals estimated by the “RGB only” network, but
overexposed pixels and image noise cause large errors. As one would expect the “NIR only” network is invariant to these
lighting changes (flat line in these graphs), and our proposed approach consistently outperforms both.

C. Comparisons to Prior Single (RGB) Image Normal Estimation Methods

We compare our method to two recent RGB-only techniques:
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Figure 10: Mean absolute angular errors in degrees of normal maps estimated by three different techniques in three chal-
lenging lighting conditions as the magnitude of each lighting issue increases from left to right. A similar network that uses
only a single RGB image to estimate normals (RGB Only) and one that uses only a single NIR image (NIR Only) both
perform worse that our method (RGB + NIR), with the RGB Only network deteriorating rapidly alongside the lighting issue.
Left: harsh lighting that produces cast shadows with increasing image exposures. Center: mixing lights with different color
temperatures. Right: increasing levels of noise, which occurs in low-light conditions.

SfSNet [3]. For a fair comparison, we retrain SfSNet on our dataset. We use the same basic network architecture as our
method, but with only a single RGB image as input and with an additional lighting estimation branch. This lighting estimation
branch takes the output of the encoder network and generates an estimate of the lighting in the input RGB image. SFSNet
uses second order spherical harmonics to represent the scene lighting, which isn’t well suited for approximating the type of
point lighting in our dataset. Therefore we instead represent the lighting as a blending weight vector over the four visible
OLATs. The lighting estimation branch is supervised using the ground truth OLAT mixing weights of the input RGB image.
The normal branch of SfSNet is supervised using the same stereo normals and same image reconstruction loss that we use
for our method.

Directional Face Relighting Network [2]. We also compare our method to the intrinsic component estimation stage of
Nestmeyer et al. [2], which uses a UNet to predict a normal and albedo map from a single RGB image. Since we assume that
the lighting conditions in the input RGB image are unknown, we do not provide the source lighting direction to the network.
We retrain their network on our dataset by supervising the normal estimation network path with the same stereo normals
used to train our method, and by using one of the RGB OLAT images chosen at random as the relighting target image. Note
that their instrinsic component estimation stage does not consider cast shadows.

Figure 11 shows examples of the outputs generated by all three techniques for different lighting conditions. Our method
outperforms both techniques even in the well lit condition, which we attribute to our novel training strategy that combines
shape information from complementary stereo and photometric signals, and the additional information provided by the NIR
input. In challenging lighting conditions, the benefit of our method becomes more significant. Table 1 in the main paper
shows mean absolute errors for these two RGB-only techniques and our proposed method.

D. Expanded Stereo Refinement Results

Figure 12 expands on Figure 7 in the paper. Specifically it shows the input images and the normal map estimated by our
method, along with the raw stereo depths prior to any smoothing or refinement.

E. Expanded Lighting Adjustment Results

Figure 13 expands on Figure 8 in the paper. Specifically it shows the supplemental rendered image that is combined with
the input RGB image in order to brighten shadowed regions along the face. We also compare the difference between using
a strictly Lambertian image formation model and our full Lambertian-plus-specular model in generating the supplemental
image that is combined with the input. Note that our full model does a better job at reproducing specular highlights along the
cheek and tip of the nose.

F. Additional Video Results

Please see our project page darkflashnormalpaper.github. io for results and comparisons on image sequences.
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Figure 11: Estimated surface normals using three different techniques under five lighting conditions. Existing RGB-only
methods perform poorly under non-ideal lighting conditions. Since our method uses a well-lit NIR image in addition to the
RGB input, it is able to generate good normal estimates even when lighting conditions degrade.



RGB Input NIR Input Normals Raw Stereo Smoothed Refined (ours)

Figure 12: Stereo methods often struggle to recover fine-scale surface details. Applying a guided bilateral filter to raw stereo
depths yields a smoother surface but with distorted features (e.g. the nose appears pinched and reduced). We use the method
of Nehab et al. [1] to compute a refined surface according to normals estimated with our method. Note how this better
preserves details around the eyes, nose, and mouth, along with fine wrinkles and creases.
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Figure 13: Our method can be used to simulate adding lights to a scene to fill in shadows. We show this virtual light image
generated using a Lambertian reflectance model alone and using our full Lambertian + Blinn-Phong model, which produces

more realistic highlights. When combined with the input RGB image (Relit) this approach compares favorably to ground
truth.
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