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Figure 1. The structure of feature extractor, where “SA” indicates

set abstraction and “PT” stands for point transformer.

1. Source Code
We release our source code as part of supplementary ma-

terial.

2. Detailed Settings
2.1. Network Implementation Details

Feature extractor. As shown in Figure 1, the feature ex-

tractor consists of three set abstraction (SA) modules (from

PointNet++) and two point transformers [3]. The SA mod-

ules use k-nearest neighbors (kNN) as grouping operation,

where we typically set k = 16 throughout the paper, includ-

ing the kNN strategy in our skip-transformer.

Up-sampling factors. In the two datasets (i.e. Comple-

tion3D and PCN) that have ground truth shapes with differ-

ent point densities, the point splitting schemes (up-sampling

factors) are different. For the Completion3D dataset, we set

r1 = 1, r2 = 2 and r3 = 2, such that P1,P2 and P3 have

point number N1 = 512, N2 = 1024 and N3 = 2048, re-

spectively; as for the PCN dataset, we set r1 = 1, r2 = 4
and r3 = 8, where N1 = 512, N2 = 2048 and N3 =
16384.
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Incomplete shape. Each incomplete shape in the Comple-

tion3D dataset has 2048 points. In the PCN dataset, the

incomplete point clouds have different point numbers, for

those point clouds with less than 2048 points, we increase

the point number by randomly copying points; for those

point clouds with more that 2048 points, we randomly se-

lect 2048 points as input.

Multilayer perceptron. The multilayer perceptron in this

paper refers to both one-dimensional convolution layer and

one-dimensional ResNet block [2].

2.2. Training Loss

Completion loss. The L1 version of Chamfer distance (CD)

is defined as

LCD(X ,Y) =
∑

x∈X
min
y∈Y

‖x− y‖+
∑

y∈Y
min
x∈X

‖y − x‖, (1)

where X and Y are point sets, x ∈ X and y ∈ Y are

point coordinates, respectively. The L2 version of CD re-

places L1-norm in Eq.(1) by L2-norm. Our completion loss

is given as

Lcompletion = LCD(Pc,P
′
c) +

3∑

i=1

LCD(Pi,P
′
i ), (2)

where P ′
i and P ′

c denote the down-sampled ground truth

point clouds that have the same point number as point cloud

Pi and Pc, respectively.

Preservation loss. The partial matching loss is defined as

Lpartial(X ,Y) =
∑

x∈X
min
y∈Y

‖x− y‖, (3)

which is an unidirectional constraint that only requires the

output to partially match the input. Therefore, we use it as

the preservation loss

Lpreservation = Lpartial(P,P3), (4)



where P is the input point cloud and P3 is the last output of

our SnowflakeNet. And the total loss function is given as

L = Lcompletion + λLpreservation, (5)

where we typically set λ = 1.

2.3. Training details

For the two datasets (i.e. Completion3D and PCN

dataset), we use AdamOptimizer to train SnowflakeNet. It

takes 200 steps to warm-up the learning rate from 0 to 10−3,

and then the learning rate is exponentially decayed by 0.5

for every 50 epochs.

PCN dataset. For each model in the PCN dataset (16384

points in ground truth), there are 8 incomplete shapes that

are captured from 8 different views. In each training epoch,

we randomly select a single view out of eight for each

model. We use 4 NVDIA GTX 2080TI GPUs with a batch

size of 80 to train SnowflakeNet, and it takes 800 epochs to

converge.

Completion3D. For the Completion3D dataset (2048 points

in ground truth), the training process is accomplished using

a single NVDIA GTX 2080TI GPU with a batch size of

32. It takes 150 epochs to converge. And we scale all the

training shapes of Completion3D by 0.9 to avoid points out

of range of tanh activation.

3. More Results
3.1. The effect of splitting strategy

Table 1. Effect of splitting strategy.

Splitting strategy avg. Couch Chair Car Lamp

one-step 9.53 6.03 11.0 9.94 9.26

two-steps 8.64 6.00 10.3 9.62 8.66

baseline 8.48 5.89 10.6 9.32 8.12
three-steps 8.66 6.04 10.0 9.53 9.02

The SPD is flexible for increasing the point number.

When ri = 1 (ri is the up-sampling factor of the i-th SPD),

it serves to move the point from previous step to a better po-

sition; when ri > 0, it splits point by a factor of ri. In this

section, we analyze the influence of different point split-

ting strategies on the performance of SnowflakeNet, and

the other experiment settings are same as ablation study.

As shown in Table 1, we additionally test three different

splitting strategies. The one-step splitting adopts a single

SPD (up-sampling factor is 4) to split P0 (512 points) to

P1 (2048 points). The two-steps splitting adopts two SPDs

(up-sampling factors are both equal to 2) and produces three

point clouds P0,P1 and P2 of the size 512 × 3, 1024 × 3
and 2048 × 3, respectively. For the three-steps strategy

(three SPDs of up-sampling factor 2), we particularly set

Nc = N0 = 256 (see Section 3.1) so that it outputs 4 points

clouds of the size 256× 3, 512× 3, 1024× 3 and 2048× 3.

Note that the baseline is two-steps splitting with an addi-

tional SPD (up-sampling factor equals to 1), which serves to

rearrange the initial point positions. By comparing one-step

splitting with the other strategies, we can find that multiple

steps of splitting boosts the performance of SnowflakeNet

significantly (in terms of average CD), this should credit to

the collaboration between SPDs. By comparing two-steps

splitting with three-steps splitting, we can find that the two-

steps splitting suffices for generating a sparse point cloud

with 2048 points (not necessarily for a dense one with more

points), and extra SPDs may not improve the performance

but will increase the computational burden. And by com-

paring the two-steps splitting with the baseline, we can find

that the additional SPD which adjusts the initial point posi-

tions can facilitate the point splitting process.

3.2. Size of the model

In Table 2, we compare our SnowflakeNet (Ours) with

PCN and GRNet in terms of parameter number and FLOPs

on PCN dataset. The results demonstrate that SnowflakeNet

is significantly smaller than GRNet in terms of parameter

number, and it has the lowest computational complexity in

terms of FLOPs.

Table 2. Model size of different methods.

Models PCN GRNet Ours

params (M) 6.86 76.7 19.2

FLOPs (G) 14.7 25.9 9.93
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Figure 2. Completion results under increasing noise levels to input.

3.3. Sensitivity to random noise.

We evaluate the performance of our model under increas-

ing Gaussian noise levels, quantitative and qualitative re-

sults are shown in Table 3 and Figure 2, respectively. The

results indicate that our method performs well under small

noise perturbation (0.5%). As noise level increases (1.0%,

1.5%), quantitative results will degrade due to large cor-

ruption of partial inputs (e.g. comparing the input in Fig

2(a) with Fig 2(d)), while qualitative results are still visu-

ally plausible. Note that we use the pre-trained model from

ablation study (without fine tuning) for evaluation, which

has not been trained on any noisy inputs.



Table 3. Sensitivity to noise.

Noise levels avg Couch Chair Car Lamp

0% 8.48 5.89 10.6 9.32 8.12
0.5% 9.01 9.59 11.1 6.28 9.04

1.0% 12.1 13.7 11.7 8.13 14.8

1.5% 15.6 17.0 20.2 9.83 15.3

3.4. Effect Justification of Skip-Transformer

In Figure 3, we visualize the point splitting process of the

four network variations, as illustrated in Section 4.2 (Effect

of skip-transformer). The experiment is conducted on the

validation set of Completion3D, so that P1,P2 and P3 have

the point number N1 = 512, N2 = 1024 and N3 = 2048,

respectively. By comparing Self-att , Full with No-connect
and No-att, we can find that the attention mechanism en-

ables the SPD to capture local structure, thus result in more

diverse splitting patterns; by contrast, the splitting patterns

of No-connect and No-att are monotonous, and ignore to

comply with local pattern (the columns of the chair back).

And by comparing Full with Self-att, we can find that con-

secutive point splitting processes in the Full model are more

consistent and tend to work in an incremental manner. Al-

though P1 in Full also has noise in the back region, after

two steps of point splitting, the Full model can reduce most

of the noise, this should credit to the skip-transformer.

3.5. More visualization results

The ablation study and experiment in supplementary

(Section 3.1) are conducted on the four categories (i.e.

couch, chair, car and lamp) of validation set in the Com-

pletion3D dataset. To prove the generalization ability of

our SnowflakeNet, we use the pre-trained model in ablation

study to complete chairs in the ScanNet [1] dataset (with-

out fine-tuning). Both the input and prediction shapes have

2048 points, where we up-sample the input point cloud by

randomly copying points. As shown in Figure 4 and Figure

5, even for the shapes that are highly noisy and incomplete,

our SnowflakeNet is able to predict a complete point cloud

with less noise. In Figure 6, we present more snowflake

point deconvolution for objects under each category. In Fig-

ure 7 and Figure 8, we provide more shape completion re-

sults on both the PCN and Completion3D datasets under

each category.
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Figure 3. Effect justification of skip-transformer. For each model, the second column is P1 (512 points) and the fifth column is P3 (2048

points). In the third column, we sample some points from the back of the chair and visualize two steps of point splitting together (P1 to P2

to P3), where the gray lines indicate the first point splitting and the red lines indicate the second. To be more clear, we zoom in the figures

in the third column and visualize a smaller region in the fourth column (green boxes). The first and the last column are the visualization of

detailed local structure of P1 and P3, respectively.



(a) Input

(b) Prediction

Figure 4. Visualization of completion results on ScanNet chairs. The completion results demonstrate the generalization ability of Snowflak-

eNet.
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Figure 5. More completion results of the chairs in ScanNet dataset.
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Figure 6. Visualization of snowflake point deconvolution on different objects under each category, the visualization arrangement is the

same as Section 4.3 (visualization of point generation process of SPD). For each object, we sample two patches of points and visualize two

steps of point splitting together, note that for each point splitting, we only demonstrate the initial parent point and the splitting paths, and

the child points are not shown.
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Figure 7. Visualization of completion results on the PCN dataset. For each category, the first row is the input incomplete shape, the second

row is the final prediction shape, and the third is the ground truth.
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Figure 8. Visualization of completion results on Completion3D. For each category, the first row is the input incomplete shape, the second

row is the final prediction shape, and the third is the ground truth.


