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1. More details about synaptic consolidation
In our paper, we have mentioned that the Synaptic Con-

solidation module should include a submodule to concen-
trate on figuring out importance of synapses. In this section,
we focus on the details of the way we adopt to evaluate the
importance of synapses.

Most of deep learning based de-raining methods are ca-
pable of obtaining remarkable results by heuristically con-
structing a complicated neural network architecture in an
end-to-end fashion. These methods regard the CNN as an
encapsulated end-to-end mapping module to map the in-
put image to its clean counterpart. Specifically, for the rain
imaging process, it can be formulated as:

O = R+B, (1)

where the O and B denote the rainy and the clean image re-
spectively. The CNN based methods treat the rain removal
as the mapping from input to output:

G = f(O; θ), (2)

where f indicates the CNN equipped de-raining architec-
ture and θ refers to the parameter set of the network. Be-
sides, the loss function is employed to evaluate the differ-
ence between the output and the ground truth. The training
of de-raining network corresponds to minimize the objec-
tive loss function given data from training set, recorded as:

min L(G,B)

= min
θ

L(f(O; θ), B), (3)

where L indicates the conventional loss (e.g. MSE [1]) to
train de-raining network. For simplicity, Eq. (3) is rewritten
as:

min
θ

L(O,B; θ). (4)

We consider the situation that training the de-raining
network on a sequence of datasets, whose total length is
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recorded asN , with our Neural Reorganization. The param-
eter set of de-raining architecture f is denoted as θn when
the training of network on dataset n is finished. The con-
tinual two rainy image sets are denoted as Xn, Xn+1(0 ≤
n < N − 1) and their clean counterparts are remarked
as Y n, Y n+1(0 ≤ n < N − 1) respectively. For xn ∈
Xn, yn ∈ Y n, suppose xn is random variable, which is in-
dependently and identically distributed to Pn, and yn is the
corresponding clean image. If xn is fed into network, the
degradation of performance on dataset n introduced by the
training of network on dataset n+ 1 is evaluated by:

Distance(f(xn; θ), f(xn; θn))

∆
= |L(f(xn; θ), yn)− L(f(xn; θn), yn)|
= |L(xn, yn; θ)− L(xn, yn; θn)| , (5)

where | · | denotes absolute value operator, ∆
= means defini-

tion, the function Distance measures the distance between
f(xn; θ) and f(xn; θn),L represents conventional loss used
by training de-raining network. It is noteworthy that we use
θ to refer to the trainable parameters, which shall evolve
to θn+1 when the training procedure is finished on dataset
n + 1. The change of parameter θn when model is trained
on the new dataset n + 1 is denoted by ∆θn whose mathe-
matical form is

∆θn = θ − θn. (6)

To evaluate Distance(f(xn; θ), f(xn; θn)), we take the
Taylor expansion of L(xn, yn; θ) at point θn, which is an
infinite sum of terms that are expressed in the form of target
function’s derivatives at a single point:

L(xn, yn; θn + ∆θn) = L(xn, yn; θn)

+ (∇θL(xn, yn; θ))
T |θ=θn ·∆θn +O(‖∆θn‖2). (7)

Combining Eq. (5) and Eq. (7), we can get the approxima-
tion:

Distance(f(x; θ), f(xn; θn))

≈
∣∣∣(∇θL(xn, yn; θ))

T |θ=θn ·∆θn
∣∣∣ . (8)



Clearly, |∇θL(xn, yn; θ)| measures the importance
of parameters. Specifically, the larger element of
|∇θL(xn, yn; θ)| means the corresponding parameter
(synapse) is more influential to previous tasks. Hence, we
define Ω to evaluate the importance of synapse over dataset
n, whose mathematical form is:

Ω = E
x∼Pn

[∣∣∣∣∂L(f(x; θ), y)

∂θ

∣∣∣∣
θ=θn

]
. (9)
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