
DetCo: Unsupervised Contrastive Learning for Object Detection

Enze Xie1∗, Jian Ding3*, Wenhai Wang4, Xiaohang Zhan5,
Hang Xu2, Peize Sun1, Zhenguo Li2, Ping Luo1

1The University of Hong Kong 2Huawei Noah’s Ark Lab
3Wuhan University 4Nanjing University 5Chinese University of Hong Kong

A. Appendix

In appendix, we first show that the results of DetCo on
Semi-Supervised Object Detection in Section A.1 and more
downstream tasks in Section A.2. Second, in Section A.3,
we show the visualization results of DetCo and MoCo v2.
Third, we show more implementation details in Section A.4.
Finally, we analysis more ablation studies of DetCo in Sec-
tion A.5.

A.1. Semi-Supervised Object Detection

To verify the effectiveness of self-supervised learning on
small scale dataset, we randomly sample 1%, 2%, 5%, 10%
data to fine-tune the Mask RCNN C4 / FPN. For all the set-
tings, we fine-tune the detectors with 12k iterations to avoid
overfitting. Other settings are the same as COCO 1× and
2× schedule. The results for Mask RCNN with 1% and 2%
data are shown in Table I. The results for Mask RCNN with
5% and 10% data are shown in Table II. From Table I, we
find that with only 1% and 2% data, all other unsupervised
methods have lower results than supervised counterparts.
However, DetCo performs better than all supervised / un-
supervised methods. For example, DetCo is 2.5 AP and 4.8
AP50 higher than MoCo v2 with 1% data. Moreover, for
5% and 10% training data, DetCo also outperforms all the
counterparts with a large margin, e.g. 1.9 AP higher than
MoCo v2 with 10% data. These results shows that the fea-
ture representation pre-trained from self-supervised learn-
ing approach is beneficial for semi-supervised object detec-
tion.

A.2. More Experiment Results

COCO with 2× schedule. Table III shows the results of
Mask RCNN R50 C4 / FPN on COCO with 2× sched-
ule. DetCo achieves state-of-the-art performance on both
object detection and instance segmentation. For example,
for Mask RCNN-C4, DetCo is 1.9 better than supervised
method on AP bb

75 , 0.6 better than MoCo v2 on AP bb
50 .

*equal contribution

LVIS Instance Segmentation. We use LVIS v1.0 for train-
ing and evaluation. MoCo [3] adopted LVIS v0.5, but it is
outdated and can not be downloaded from the official web-
site. So we fine-tune and compare all the methods using
LVIS v1.0 dataset. The training schedule of LVIS is 180k
iterations, the same as MoCo. Other settings also keep the
same with MoCo. The results are shown in Table IV. DetCo
also outperforms MoCo v2 and supervised methods in both
detection and instance segmentation.

A.3. More Visualized Results

A.3.1 Visualization of Attention Map

Implementation Details. We visualize the attention map of
Res5 on the ImageNet dataset, which is 1/32 resolution of
the input image size. To get relatively clear attention map,
we enlarge the input size from 224×224×3 to 448×448×3.
The shape of output tensor Res5 is 14×14×2048. We cal-
culate the mean of tensor Res5 in the channel dimension
and normalize the value to 0-1. Then we get the attention
map, which shape is 14× 14× 1. We further upsample the
attention map to input image’s size using bilinear interpola-
tion and project the attention map on to the image to get the
visualized results.

Visualization Results. As shown in Figure I, it is surpris-
ing to see that both MoCo v2 and DetCo can generate rel-
atively high-quality attention map that focuses on the fore-
ground objects. It demonstrates that contrastive learning-
based self-supervised representation methods can poten-
tially solve saliency object detection or object localization
in an unsupervised manner. Moreover, the attention map
of DetCo is much better than MoCo v2 mainly in two as-
pects: (1) more accurate boundary localization. (2) more
object discovery. We analyze that it is mainly due to in-
troducing the global-to-local contrasts into DetCo, forcing
each local patch aware of instance discrimination. To opti-
mize global-to-local contrastive loss, each local patch needs
to distinguish the foreground feature; that is why DetCo can
output a more accurate attention map. However, MoCo v2
uses the whole image to extract features, so it only needs to

Method Mask R-CNN R50-FPN COCO 1% Data Mask R-CNN R50-FPN COCO 2% Data
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 2.5 5.8 1.7 2.3 4.9 1.8 4.5 10.3 3.2 4.3 9.3 3.5
Supervised 10.0 19.9 9.2 9.7 18.3 9.2 13.7 26.6 12.8 13.0 24.2 12.6
MoCo[3] 9.1(-0.9) 17.3(-2.6) 8.6(-0.6) 8.6(-1.1) 16.1(-2.2) 8.3(-0.9) 13.0(-0.7) 24.1(-2.5) 12.6(-0.2) 12.3(-0.7) 22.4(-1.8) 12.2(-0.4)
MoCo v2[2] 9.9(-0.1) 18.7(-1.2) 9.5(+0.3) 9.5(-0.2) 17.2(-1.1) 9.2(0.0) 13.8(+0.1) 25.3(-1.3) 13.4(+0.6) 12.9(-0.1) 23.3(-0.9) 12.7(+0.1)
DetCo 12.4(+2.4) 23.5(+3.6) 11.8(+2.6) 12.1(+2.4) 21.9(+3.6) 12.0(+2.8) 16.0(+2.3) 29.6(+3.0) 15.6(+2.8) 15.3(+2.3) 27.4(+2.2) 15.1(+2.5)

Table I. Semi-Supervised two-stage Detection fine-tuned on COCO 1% and 2% data. All methods are pretrained 200 epochs on
ImageNet. Green means increase and gray means decrease. DetCo is better than supervised / unsupervised counterparts in all metrics.

Method Mask R-CNN R50-FPN COCO 5% Data Mask R-CNN R50-FPN COCO 10% Data
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 9.2 18.6 7.9 8.8 16.9 8.1 10.1 20.2 9.1 9.8 18.6 9.2
Supervised 19.9 37.0 19.3 18.6 33.7 18.4 23.8 42.8 23.9 22.2 39.6 22.3
MoCo[3] 19.6(-0.3) 35.1(-1.9) 20.0(+0.7) 18.3(-0.3) 32.3(-1.4) 18.6(+0.2) 23.3(-0.5) 40.7(-2.1) 23.9(0.0) 21.9(-0.3) 38.0(-1.6) 22.4(+0.1)
MoCo v2[2] 20.6(+0.7) 36.6(-0.4) 21.0(+1.7) 19.1(+0.5) 33.7(0.0) 19.2(+0.8) 24.1(+0.3) 42.0(-0.8) 24.8(+0.9) 22.5(+0.3) 39.1(-0.5) 23.3(+1.0)
DetCo 21.9(+2.0) 39.1(+2.1) 22.2(+2.9) 20.4(+1.8) 36.1(+2.4) 20.6(+2.2) 26.0(+2.2) 45.2(+2.4) 27.0(+3.1) 24.3(+2.1) 42.0(+2.4) 25.0(+2.7)

Table II. Semi-Supervised two-stage Detection fine-tuned on COCO 5% and 10% data. All methods are pretrained 200 epochs on
ImageNet. DetCo is better than supervised / unsupervised counterparts in all metrics.

Method Mask R-CNN R50-C4 COCO 180k Mask R-CNN R50-FPN COCO 180k
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init 35.6 54.6 38.2 31.4 51.5 33.5 36.7 56.7 40.0 33.7 53.8 35.9
Supervised 40.0 59.9 43.1 34.7 56.5 36.9 40.6 61.3 44.4 36.8 58.1 39.5
MoCo[3] 40.7(+0.7) 60.5(+0.6) 44.1(+1.0) 35.4(+0.7) 57.3(+0.8) 37.6(+0.7) 40.8(+0.2) 61.6(+0.3) 44.7(+0.3) 36.9(+0.1) 58.4(+0.3) 39.7(+0.2)
MoCov2[2] 41.0(+1.0) 60.6(+0.7) 44.5(+1.4) 35.6(+0.9) 57.2(+0.7) 38.0(+1.1) 40.9(+0.3) 61.5(+0.2) 44.7(+0.3) 37.0(+0.2) 58.7(+0.6) 39.8(+0.3)
DetCo 41.3(+1.3) 61.2(+1.3) 45.0(+1.9) 35.8(+1.1) 57.9(+1.4) 38.2(+1.3) 41.5(+0.9) 62.5(+1.2) 45.6(+1.2) 37.7(+0.9) 59.5(+1.4) 40.5(+1.0)

Table III. Object detection and instance segmentation fine-tuned on COCO. All methods are pretrained 200 epochs on ImageNet.
DetCo outperforms all supervised and unsupervised counterparts.

Method APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand Init 19.6 31.8 20.9 19.0 29.8 20.1
Supervised 22.7 36.8 24.1 22.2 34.6 23.5
MoCo[3] 23.1 37.4 24.5 22.5 35.1 23.8
MoCo v2[2] 23.2 37.4 24.7 22.8 35.1 24.4
DetCo 23.5 37.7 24.8 23.0 35.5 24.5

Table IV. DetCo vs. supervised and other unsupervised meth-
ods on LVIS v1.0 dataset. All methods are pretrained 200 epochs
on ImageNet. We evaluate object detection and instance segmen-
tation tasks.

activate the most discriminative area.

A.3.2 Visualization of Image Retrieval

Implementation Details. We visualize the image retrieval
results on the ImageNet validation dataset. First, we ex-
tract the final-layer feature of all the images using the fea-
tures learned by DetCo. Then we use global average pool-
ing(GAP) on the extracted feature, followed by a L2 nor-
malization. The shape of each feature vector is 1×1×2048.
For retrieval, we randomly select several images as query
images, then directly find K nearest images in the feature
space. K is set to 9 in this paper.
Visualization Results. Figure II shows the nearest-
neighbor retrieval results. We find that DetCo can success-
fully group images according to their categories in most
cases in an unsupervised learning manner.

Image DetCo MoCo Image DetCo MoCo

Figure I. Attention maps generated by DetCo and MoCov2. DetCo can activate more object regions in the heatmap than MoCov2, and
the attention map of DetCo is more accurate than MoCo v2 in object boundary. Zoom in for better visualized results.

Query Retrievals

Figure II. Retrieval results of DetCo on ImageNet. The left column are queries from the validation set, while the right columns show 9
nearest neighbors retrieved from the validation set.

A.4. More Implementation Details

First, we provide a pseudo code for the DetCo training
loop in Pytorch style, as shown in Algorithm 1. We use
Apex 1 for mixed-precision training to speed up the training
process. Most of our training hyperparameters are directly
taken from MoCo [3]. The loss weight for intermediate
contrastive loss is 1,0.7,0.4,0.1 for Res5, Res4, Res3, Res2
as default. The learning rate for pre-training is 0.06 with
the cosine decay schedule. For each intermediate layer
and global-to-local contrast, we use a 2-layer multi-layer
perceptron(MLP) head that projects the feature to a 128-D
space. The design of MLP is the same as MoCo v2, except
for the input channel. We also build an individual memory
bank for each head to store the negative samples. In sum-
mary, there are 12 heads and 12 memory banks in DetCo.
For Lg↔g , Lg↔l and Ll↔l, the temperature is 0.2, 0.5 0.2,
respectively.
Downstream tasks. (1) DensePose. In the main paper,
we report the Densepose results. For the Densepose task,
MoCo used Detectron2 to evaluate Densepose. However,
we find the Detectron2 updated recently, and the perfor-
mance is higher than MoCo. So we re-finetuned all the
methods use the latest Detectron2 code. We fine-tune
Densepose RCNN with 26k iterations for all methods and
report the results of “densepose gps”. (2) RetinaNet. We
use ResNet50 as the backbone. We follow the setting of
MoCo on Mask RCNN, adding extra normalization lay-
ers in both backbone and fpn. (3) other method. For
SwAV [1], we download the pre-trained weights from the
official code 2. For a fair comparison, we choose the SwAV
with batch size 256, and the training epochs are 200. The
corresponding ImageNet linear classification is 72.7% in
Top-1 accuracy. Then we fine-tuned the weights on PAS-
CAL VOC, increasing the learning rate from 0.01 to 0.1,
and set the warmup factor=0.333 for 1000 iterations.
The above settings the same with the SwAV [1] paper.

A.5. More Ablation Studies

Weight of Hierarchical Intermediate Loss. We find
that the transfer detection performance is highly sen-
sitive to the loss weight hyper-parameter for hierarchi-
cal intermediate loss, so we set different weights for
Res2, Res3, Res4, Res5. The result is shown in Table V.
As shown in Table V (a), if we set the loss weight equals
(0,0,0,1), our method degenerates to MoCo. In Table V
(b)(c), we find that directly adding hierarchical interme-
diate loss with inappropriate weights leads to negative re-
sults. We find that the shallow layers and the deep layers
are in a competitive relationship. In other words, if we set
loss weight (1,1,1,1) equally, the discriminative ability of

1https://github.com/NVIDIA/apex
2https://github.com/facebookresearch/swav

Algorithm 1 Pseudocode of Intermediate Contrastive Loss.

net_q: encoder for query
net_q = {backbone_q, head_q_list=[head 2-5]},

net_k: same structure as net_q, encoder for key
queue_list: a list of queues 2-5 of K keys (CxK)
m: momentum
t: temperature
x: input image
w: loss weight for 2-5
loss_nce: contrastive loss

net_q.params = net_k.params # initialize
x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

list_q = backbone_q.forward(x_q) # list of queries
list_k = backbone_k.forward(x_k) # list of keys

total_loss = 0 # weight-sum of loss from 4 stages
for i in range(4): # loop through 4 stages

feature, queue and weight of current stage
q = list_q[i] # queries: NxC
k = list_k[i] # keys: NxC
queue = queue_list[i] # dictionary of K keys (CxK)
weight = w[i]

forward mlp head
q = head_q_list[i].forward(q)
k = head_k_list[i].forward(k).detach()

calculate loss
loss = loss_nce(q, k, queue, t)
total_loss = total_loss+loss*weight

update the queue
dequeue_and_enqueue(queue, k)

SGD update: query network
total_loss.backward()
update(net_q.params)

momentum update: key network
net_k.params = m*net_k.params+(1-m)*net_q.params

2-5: 4 different stages of backone, termed res2, res3, res4, res5.

deep layers are large negatively influenced by shallow lay-
ers. Here we revisit PSPNet [4], which also use the shallow
feature as the auxiliary loss. In PSPNet, the loss weights
of the shallow and deep feature are (0.4,1). In DetCo, we
set the loss weight to (0.1,0.4,0.7,1.0), as shown in Table V
(d)(e), and we find this loss weight improves the transfer
detection performance. We argue that making the shallow
layer’s weight equal to deep layers is too aggressive to op-
timize. Moreover, if we normalize the weight, making the
sum of loss weight equals to 1, the accuracy also drops.

Memory Banks for Hierarchical Intermediate Loss.
Original MoCo only utilizes the final feature to calcu-
late contrastive loss, so MoCo only uses one memory
bank (queue) to store negative samples. However, here we
utilize Res2, Res3, Res4, Res5 to calculate the multi-level
contrastive loss. An intuitive idea is we also use one mem-
ory bank to store negative samples from four stages. In this
way, one memory bank is shared for both high-level and
low-level features. However, we find sharing memory bank
leads to performance drop. So we build an individual mem-
ory bank for the feature from each level. Under this set-
ting, the performance improves. The results are shown in

weight AP AP50 AP75

(a) (0,0,0,1) 56.3 81.8 62.1
(b) (1,1,1,1)+Norm 55.1 80.4 60.4
(c) (1,1,1,1) 55.8 81.6 62.2
(d) (0.1,0.4,0.7,1)+Norm 56.5 82.2 62.7
(e) (0.1,0.4,0.7,1) 57.0 82.2 63.1

Table V. Ablation study of intermediate loss weight, under 100
epoch pre-training. “Norm” means normalized the loss weights,
making the sum of weights equals 1.0.

share queue AP AP50 AP75

(a) ✓ 56.2 81.8 62.3
(b) × 57.0 82.2 63.1

Table VI. Ablation study of share or not share queue, under 100
epoch pre-training.

+Lg↔g +Lg↔l +Ll↔l AP
(a) ✓ × × 56.0
(b) ✓ ✓ × 56.2
(c) ✓ ✓ ✓ 56.5

Table VII. Ablation study of cross contrastive loss, under 50 epoch
pre-training.

Table VI. We consider if sharing memory bank cross lev-
els, the positive samples of each stage need to discriminate
negative samples from all levels, which is challenging to
optimize. Suppose each layer owns an individual mem-
ory bank. In that case, each stage’s positive samples only
need to discriminate negative samples from its correspond-
ing layer, making the network converge easy.
Global and Local Contrastive Losses. As shown in Ta-
ble VII, adding loss Lg↔l can improve the transfer detection
performance. Moreover, adding loss Ll↔l can further im-
prove the results. The results match the main paper’s anal-
ysis that adding global-and-local contrastive losses can (1)
actually improve the lower bound of mutual information.
(2) improve the instance discrimination of local patches,
which is beneficial to object detection.

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 5

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020. 2

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 1, 2, 5

[4] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-

ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2881–2890, 2017. 5

