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1. Hi-LANDER Clustering Visualization

We visualize in Figure 1 the hierarchical clustering pro-
cess of the proposed method Hi-LANDER. We show three
ground-truth clusters that differ in cluster sizes and embed
their features into a 2D plane with t-SNE, and then visualize
the points (as shown on the left column). The blue squares
are the input nodes at each level of the hierarchy. The col-
ored dots are peak nodes that are grouped from the interme-
diate clusters (connected-components), and the colors rep-
resent the three different ground-truth classes. Note that the
peaks at each level then become ordinary input nodes at the
next level.

We see that the nodes in the red cluster are grouped
efficiently with only one peak node left in level 1, while
there are many small clusters for the yellow and green class
nodes. In the next hierarchy, as shown in the second row,
the distance between each pair of the peak nodes is larger,
and the number of peaks reduced rapidly. The red cluster
stays unchanged since our base clustering model LANDER
stops adding edges, while the green and yellow clusters are
further grouped. The last row shows the final level where
all three classes converge, and only nodes belonging to the
yellow cluster are further grouped.

Besides, on the right column of Figure 1, we demonstrate
the actual face images corresponding to the peak nodes at
each level of the hierarchical clustering process for all three
classes. Compared to level 2 peaks, the images correspond-
ing to level 1 peaks are more “repetitive.” If we run a prior
GNN based clustering model that only produces a single
partition, each “repetitive” level 1 peak will lead to a sepa-
rate cluster, and this results in low clustering completeness.
In level 2, the large number of small clusters corresponding
to the yellow class are grouped into 4 larger clusters. As
shown in the second row of the right column in Figure 1,
the images correspond to the peak nodes of these 4 clus-

*Indicates equal contribution.

ters (with the yellow boundary) become less visually simi-
lar, while one can tell that they still represent the same per-
son. Note that the three classes converge at different levels.
Nodes of the red class already converge at the first level,
the green class nodes converge at level2 while the yellow
class requires all three levels to reach convergence. This
illustrates the variance of real-world test data where the in-
stance per class can be very different from class to class and
it demonstrates Hi-LANDER’s capability in dealing with
such large variance.

2. Experiment Details
Here we describe additional experiment details including

dataset statistics, input feature dimensions, sensitivity tests
on Hi-LANDER hyper-parameters, and the runtime hard-
ware and software specifications. Code is included in the
supplementary zip file.

Dataset Images Entities Mean Cluster Size

TrillionPairs-Train [1] 669,560 18,084 37.0
Hannah-Test [6] 201,240 251 801.8
IMDB-Test [10] 1,265,173 50,289 25.2

IMDB-Test-SameDist [10] 614,002 18,084 34.0
iNat2018-Train [9] 324,418 5,690 57.0

iNat2018-Train-DifferentDist [9] 51,696 5,690 9.0
iNat2018-Test [9] 135,660 2,452 55.3

Table 1. Statistics of All Datasets

Dataset Statistics Table 1 shows the detailed dataset statis-
tics for all train and test sets used for the experiments.

Hannah IMDB iNat2018
128 128 512

Table 2. Input Feature Dimensions For All Datasets.

Input Feature Table 2 lists the input feature dimensions
for all datasets. L2-normalization is applied on the features
before network inference.
Sensitivity Analysis over Hyper-parameters Figure 2
shows the sensitivity of Hi-LANDER to the various hyper-
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Figure 1. Hi-LANDER clustering process visualization on Hannah with multiple image classes. The yellow, red and green color represent
three different classes that vary in cluster size. The left column shows the t-SNE [8] embedded nodes and peaks from level 1 to level 3 of
Hi-LANDER’s hierarchy. At each level, blue squares represent the input nodes and colored dots refer to the peak nodes which are grouped
from the intermediate clusters (connected-components). Note that the peaks at each level then become the input nodes at the next level.
The right column shows the images corresponding to the peaks at each level of the three classes. The three classes converge at different
levels: nodes of the red class already converges at the first level, the green class converge at level2 while the yellow class converge at level3.
Best viewed in color.

parameters of the method including k for k-NN build, pτ for
edge set decoding, the feature aggregation function choice
detailed in Section 3.4 of the main paper, and the encoder
layer architecture choice (GAT versus a vanilla GCN layer),
mentioned in Section 3.3 of the main paper. The top two
plots show the sensitivity of k, pτ and the feature aggrega-
tion mechanism, where solid lines refer to identity feature
aggregation and dashed lines represent the concatenation of
identity and average feature. The bottom two plots show

the sensitivity to the two different types of encoder layer
architecture, a GAT (solid lines) and a vanilla GCN layer
(dotted lines). Based on the validation set (a part of the
meta-training set), with GAT encoding, the optimal hyper-
parameters over the face clustering task are chosen as k =
10, pτ = 0.9, aggregation using identity feature only. Thus,
for k sensitivity, we vary it from 8 to 12. For pτ sensitivity,
we vary it from 0.85 to 0.95 with interval of 0.025. Met-
rics of NMI (blue), Fp (yellow), and Fb (red) are shown.
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Figure 2. Sensitivity to hyper-parameters on the Hannah face clus-
tering benchmark. The top two plots show sensitivity of Hi-
LANDER to the hyper-parameters of k, pτ and the feature aggre-
gation mechanism, where solid lines show the results of identity
feature aggregation and dashed lines show the results from con-
catenation of identity and average feature. The bottom two plots
show sensitivity of Hi-LANDER to different types of encoders, a
GAT layer (solid lines) as compared to a vanilla GCN layer (dotted
lines), as detailed in Section 3.3 of the main paper. For k sensitiv-
ity tests, we vary it around the optimal value of 10 (chosen on the
validation sets) from 8 to 12. For pτ sensitivity tests, we vary it
around the optimal value of 0.9, from 0.85 to 0.95 with interval of
0.025. All three clustering metrics of NMI (blue), Fp (yellow) and
Fb (red) are shown. Best viewed in color.

The plots show that varying k and pτ near the optimal value
does not result in significant changes in results. The differ-
ences in final clustering accuracy between identity-feature-
only aggregation and concatenation of both identity and av-
erage feature, as well as the variations between using GAT
versus a vanilla GCN layer in encoding, are small.
Additional Clustering Benchmark with Unseen Test
Data Distribution Besides large-scale face datasets such
as IMDB and Hannah, we also test on the smaller IJB-
B/C datasets. Table 3 compares against the best-performing
prior methods of unsupervised (DBSCAN [3]), hierarchi-
cal unsupervised (H-DBSCAN [2]), and supervised (GCN-
V+E [12]) baselines. Additionally, we test on another
video dataset, MusicVideos [13] with 8 videos and 95k
faces from 40 identities. Similar phenomenon as Hannah
video testing is observed, where Hi-LANDER (0.472 av-
erage F-score) significantly outperforms all baselines (next
best from GCN-V+E, 0.410).

Method IJB-B clustering task IJB-C clustering task MusicVideos
Avg F-score NMI Avg F-score NMI Avg F-score NMI

DBSCAN [3] 0.214 0.809 0.271 0.841 0.026 0.500
H-DBSCAN [2] 0.677 0.902 0.703 0.924 0.184 0.540
GCN-V+E [12] 0.759 0.944 0.769 0.953 0.410 0.682

Hi-LANDER 0.820 0.945 0.820 0.952 0.472 0.704
Table 3. We use the largest protocols with all subjects in IJB-B/C;
Average F-score between Fp and Fb is reported.

Method Hannah IMDB IJB-B IJB-C MusicVideos iNat2018-Test
Avg F NMI Avg F NMI Avg F NMI Avg F NMI Avg F NMI Avg F NMI

GAT 0.695 0.797 0.774 0.945 0.820 0.945 0.820 0.952 0.472 0.704 0.323 0.764
GCN 0.723 0.809 0.799 0.949 0.891 0.959 0.887 0.964 0.451 0.709 0.345 0.759

Table 4. Ablation: GAT versus vanilla GCN in graph encoding.

GCN vs GAT Encoding Ablation Table 4 shows the
clustering performance ablation about using GAT versus a
vanilla GCN layer in graph encoding over tests with un-
seeen data distribution. Both models have their respective
hyper-parameters tuned to optimal over the validation sets.
It is observed that the two encoding achieves similar perfor-
mances. GAT encoding outperforms vanilla GCN over the
MusicVideo and iNat2018-Test benchmarks over the aver-
age F-score and NMI metrics respectively while GCN out-
performs GAT over the rest tests.
Additional Training Details For the base clustering model
LANDER, we use 1 layer of GAT as encoder and a 2-layer
MLP for joint linkage and density prediction. Both face
and nature species models are trained for 250 epochs with
batchsize 4096. All models use SGD optimizer with 0.1
base learning rate, 0.9 momentum, and 1e-5 weight decay.
The learning rate follows a cosine annealing schedule [5].
Runtime Experiment Hardware and Software We mea-
sure the runtime (Section 4.7 of the main paper) with 8-
core Intel(R) Xeon(R) E5-2686 v4 CPU and Tesla V100
GPU. Our models use PyTorch[7] v1.5, DGL[11] v0.6 with
CUDA v10.1. k-NN building leverages faiss[4].
Runtime Experiment Additional Analysis Details Hi-
LANDER can be slower than FINCH/Graclus per hierar-
chical iteration since the latter has no or lightweight model
inference overhead. However, Hi-LANDER runs the fastest
on Hannah because 1) Hannah has many largely similar
nodes that are easily merged, greatly reducing the num-
ber of nodes to cluster for next iterations (16x ↓ after the
1st iteration) thus decreasing subsequent inference cost.
2) Hi-LANDER runs 4 iterations to converge on Hannah,
fewer than 8 in FINCH which converges at fewer nodes.
Against GCN-V, Hi-LANDER per iteration is faster due to
the smaller graph neighborhood (k) but recurrent iterations
make it slower (IMDB/iNat). However, it is faster on Han-
nah with a cost close to a single iteration as overhead after
the 1st iteration is marginal.
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