
This supplementary is organized as follows:
• Sec. A sheds light on the principal thinking of city

structures and provides the additional background on
the pipeline of city modeling, from which we narrow
down to the scope of city block modeling.

• Sec. B talks about the details related to NYC-Block
Dataset collection, pre-processing, and extensions.

• Sec. C includes subsections relevant to the main exper-
iments, including the implementation details of com-
paring methods, model architecture, metric designs,
loss compositions, etc. More illustrated samples are
attached at the end of the supplementary.

• Details with regard to various applications are ex-
plained in Sec. D; in Sec. E, we briefly discuss the
limitations and future works.

A. Background
City Structures. To help readers better understand the link-
ages between city structure and block patterns, we first pro-
vide a series of overhead views of cities across the world.
As shown in Fig. 13, the urban fabrics of different cities
are formed by distinctive block patterns. Fig. 14 zooms
in to focus on one specific city block, where a constructed
city block is abstracted into a 2D block plan in canonical
view, colored by land use categories with illustrated foot-
print shapes residing in each land lot.
City Modeling. The major steps of a typical city modeling
task include: (i) Create the terrain and partition the city or
urban area into functional zones; (ii) Generate an intercon-
nected road network; (iii) Subdivide the space in-between
roads, i.e., city blocks, into small land lots of different land
uses; and (iv) Populate tax lots with buildings, parks, and
other urban structures based on their semantics. These se-
ries of steps shed insight on the structural nature of city area,
where the city block is the fundamental element of the phys-
ical structure of urban areas; and city block patterns give or-
der and structure to a city, forming the basic unit of a city’s
urban fabric, as Allan Jacobs describes:

“. . . city street and block patterns can give order and
structure to a city, district, or neighborhood. . . All of
this can happen at a two-dimensional level, without
regard to a third dimension of topography or building
height or to a fourth dimension that includes land uses
and density of habitation - factors that can in them-
selves give order and structure, either reinforcing the
two-dimensional patterns or running counter to them.”
– Great Streets 1

Serving as a foundation for city modeling, we focus on
city block construction, i.e., the (iii) and (iv) steps in the

1This excerpt from Great Streets [18], written by the renowned urban
designer Allan Jacobs in 1993, reveals the multi-dimensional nature of ur-
ban design and city structures, where the concepts of block pattern, land
use, city order, and structure are connected and emphasized.

Figure 13: City block patterns visualized with OSMnx [7].
The square mile drawings reveal how city block patterns are
wonderfully varied across cities, and that they are individu-
ally characteristic, highly regularized, and memorable [18].

Figure 14: Satellite view of a city block, showing how a
natural-looking city block image can be abstracted into a
2D city block plan. The block is divided into different land
lots associated with land use attributes, which is the study
target of this work.

aforementioned pipeline. Our BlockPlanner system is de-
signed to automate this step through a data-driven end-to-
end learning paradigm.

B. NYC-Block Dataset
B.1. Data Preparation
Data Sources. PLUTO2 provides extensive land use and
geographic data at the tax lot level in ESRI shapefiles and
File Geodatabase formats, covering the whole NYC area.
The block shapes we used in our NYC-Block dataset are
based on these shapefiles, followed by a series of canoni-
calization steps.

2PLUTO is a backronym that stands for Primary Land Use Tax Out-
put, officially provided by NYC Department of City Planning. Notably,
PLUTO is created using the best available data from a number of city
agencies, fully open to the public, and updated timely with ensured data
accuracy and reliability.

City Block Land Lot Building
Footprint

3D Building

Land Use

Figure 15: Terminologies related to city block.

Terminology. To better understand the task of city mod-
eling, we elaborate on the key terms used in our work as
illustrated in Fig. 15, as defined in urban planning and real
estate: 1) The city block is the fundamental element of phys-
ical structure of urban areas. A city block is primarily a tract
of land bounded on all sides by streets or by a combination
of streets. It is defined by an edge and an interior; 2) The
spatial configuration and layout of a city block are defined
on the basis of its internal arrangement of land lots. Often a
lot is sized for a single house or other building; 3) Each land
lot is associated with a land use type. Land use is based on
the function of the land for different humane purposes and
economic activities. Typical land use types include residen-
tial, commercial, industrial, and transportation; 4) A build-
ing envelope is the maximum three-dimensional space on a
land lot, within which a structure can be built following a
city’s regulation; 5) The footprint of a building is its perime-
ter at the outer edge of the outside walls of the building.
Map Projection. In PLUTO, land lots geometries are
stored as polygons defined by the longitude and latitude of
their vertices under World Geodetic System 1984 (WGS84),
EPSG:4326. To visualize the WGS84 coordinate system on
a two-dimensional plane, we first project the coordinates
onto a square with the projected Pseudo-Mercator coordi-
nate system, EPSG:3857, where the mapping is conformal3.
Canonical View Transformation. To canonicalize the ar-
bitrary rotations of city blocks, we calculate the angle be-
tween the long side of each city block and the horizontal,
and perform rotation to the shape coordinates. We central-
ize the blocks and normalize them into a unit ball in 2D,
where the height n is normalized to [0, 1].
Selected Features. The PLUTO files contain more than
seventy fields. In this work, we use the two most important
features, i.e., land use and number of floors representing
building height limitation.
Land Use Statistics. Fig. 16 shows land use distribution
over five NYC boroughs and the entire NYC respectively.
It is noticeable that land use distribution in Manhattan ap-
pears to be the most diverse and complex amongst all five
boroughs. Therefore, we choose to study the Manhattan
subset in our main experiments.

3Mercator projection is unique in representing north as up and south as
down everywhere while preserving local directions and shapes.

NYC BK SI

MN BX

QN

Mixed Resi. & Comm. Bldg.

One & Two Family Bldg.

Multi-Family Walk-Up Bldg.

Multi-Family Elevator Bldg.

Commercial & Office Bldg.

Industrial & Manufacturing

Transportation & Utility

Public Facilities & Institutions

Open Space & Outdoor

Parking Facilities

Vacant Land & Others

Figure 16: Land use distribution in the entire New York
City (NYC) and five boroughs, Brooklyn (BK), Staten Is-
land (SI), Queens (QN), Manhattan (MN), and Bronx (BX).

B.2. Dataset Scalability

A natural extension of our dataset is to include city
blocks from a larger urban area. Additional to this, one
extra merit of NYC-Block Dataset is that it can be easily
fused with other datasets through attribute joins. We briefly
introduce two ways to enrich our datasets.

Join by BBL. Borough, Block, and Lot (BBL) is the par-
cel number system used to identify each unit of real estate
in New York City for numerous city purposes. For exam-
ple, NYC DOITT [3] provides building information across
the entire NYC, where each instance is associated with its
land lot through BBL. Our NYC-Block Dataset can hence be
enriched with building-related information by joining these
two data sources via BBL. The enriched dataset can thus
support further city modeling tasks, such as the footprint
generation step we mentioned in the application section.
The attributes recorded by NYC DOITT include: building
footprints, ground elevation at building base, roof height
above ground elevation, construction year, and feature type.
A number of official city data related to zoning, finance,
environments, politics, etc., can be joined in similar ways.

Join by Coordinates. A more general scenario is to estab-
lish linkage through the ubiquitous coordinates system, i.e.,
latitude and longitude provided by PLUTO database. Be-
sides the abundant street view images and satellite images,
more and more social media texts, photos, and videos nowa-
days are tagged with geo-locations. The potential to link
these visual images, human activity data, to the city regular-
ization data provided by the government can be a valuable
and exciting direction for future study.

Extension to More Cities. NYC-Block Dataset can be eas-
ily augmented to include other cities. Similar land use docu-
ments are made publicly available by many cities other than
NYC, such as Washington D.C., Los Angeles, and Lon-
don. Data from new cities can be integrated into the existing
dataset following our systematic pipeline.

Algorithm 1 Graph Encoder.
Input: Block capacity N (maximum number of lots in a

block); Number of message passing iterations T ; Lot ge-
ometry (xi,c, yi,c, wi, hi, ni), and land use category si,l

for Li, i 2 {0, 1, . . . , N � 1} ; Edge matrix E .
Output: Block code z

Encode lot geometry and semantics
fi,g = eg({xc, yc, w, h, n}), fi,s = es({sl})
Ensemble fi,g, fi,s with one-hot position encoding fi,PE

f
(0)
i = fi = elot(fi,g, fi,s, fi,PE)

z
(0) = maxpool({f (0)

i })
for t = 0 to T � 1 do

for ei,j in E do
f
(t)
i,j = h

(t)(f (t)
i , f

(t)
j)

end for
Updated lot feature f

(t+1)
i = 1

N

P
ei,j2E f

(t)
i,j ;

Obtain block feature z
(t+1) = maxpool({f (t+1)

i });
end for
Aggregate block feature z = ga{z(0), . . . , z(T)};
return z

C. Additional Implementation Details
C.1. Implementation of Comparing Methods
To make the comparing methods compatible with city block
generation scenario, the following adjustments are made:
LayoutVAE. [20] We re-implement their method and ex-
periment on our city block dataset.
MolGAN. [11] We modify it into a VAE-based framework,
termed MolVAE, while preserving their original network ar-
chitectures. We find that the training of MolVAE is more
stable on city blocks compared to its GAN counterparts.
HouseGAN. [27] Based on HouseGAN model, we make
the following modifications and term it as BlockGAN in
our experiments: 1) We eliminate its dependency on input
graph, transform it into an unconditional generative frame-
work. 2) We treat each land use assembly as an instance,
output a binary mask for each land use; the visual quality is
then evaluated without rendering the lot instance edges. 3)
To enforce the boundary constraints (i.e., ensure all land lots
are resided within the block), we add an additional channel
for a binary block boundary mask, stacked behind all land
use channels and pass to the discriminator to ensure that all
the generated land lots reside within the 2D block envelope.
4) The rasterized image resolution is set to 256 ⇥ 256 in
order to capture all land lots shapes.

C.2. Network Details
Following the recent success of generative models on

graphs [11, 25], we train our BlockPlanner under the vari-
ational scheme. The adopted training schemes and network

Algorithm 2 Graph Decoder.
Input: Block code z; Block capacity N ; Number of mes-

sage passing iterations T .
Output: Lot geometry (x̃i,c, ỹi,c, w̃i, h̃i, ñi), land use cat-

egory s̃i,l, boundary attribute s̃i,b, merge operation s̃i,m

for Li, i 2 {0, 1, . . . , N � 1} ; Edge matrix Ẽ ; Block
aspect ratio r̃y .
Decode block aspect ratio r̃y = dr(z)
Decode edge probability map P̃ = dedge(z)
Obtain the edge matrix Ẽ = P̃ � 0.5

Initialize lot feature f̃
(0)
i = {dlot(z), fi,PE}

for t = 0 to T � 1 do
for ẽi,j in Ẽ do

f̃
(t)
i,j = h

(t)
d (f̃ (t)

i , f̃
(t)
j)

end for
Updated lot feature f̃

(t+1)
i = 1

N

P
ẽi,j2Ẽ f̃

(t)
i,j

end for
Assign f̃i = f̃

(T)
i ;

Decode lot exists probability pi = �(glot(f̃i));
Decode lot geometry (x̃i,c, ỹi,c, w̃i, h̃i, ñi) = gbox(f̃i);
Decode land use attribute s̃l = glabel(f̃i);
Decode lot boundary attribute s̃b = gbound(f̃i);
Decode lot merge operation s̃m = gmerge(f̃i);
return pi, (x̃i,c, ỹi,c, w̃i, h̃i, ñi), s̃l, s̃b, s̃m, Ẽ , r̃y

Iterate
T times

fm

fi

eg es

fi,g

fi

fi,s

ENClot

(xi,c, yi,c, wi, hi, ni) si

fj

fk

...

ei,k

ei,m ei,j

ENClot-edge

fkt

fjtfmt

fit+1

epe
i

elot
fi,PEENClot

ENClot-edge

Message Passing

...

A
ggregate

ENClot-edge

...

z0

zT-1

z

Figure 17: Illustration of the graph encoder.

designs for the graph encoder/decoder part adopted are ex-
plained in Alg. 1 (Fig. 17) and Alg. 2 (Fig. 18) respectively.
The detailed architecture parameters are specified in Tab. 4.

C.3. Experimental Settings
We use PyTorch for implementation and a workstation

with a single GTX TITAN X GPU. The base model sets the
iteration number T = 3 for both encoder and decoder, with
latent code dimension fixed as 256. We use Adam optimizer
with lr = 1e�3 for the first 200 epochs and schedule lr =
1e�4 for another 200 epochs. The batch size is set to 32.

Architecture Module Layer

Encoder

lot geometry encoder (eg) Linear(5, 256)
lot semantic embedding (es) Embedding(11, 256)
lot encoder (elot) Linear(256+256+N , 256)
node edge fuse encoder (h(t)) Linear(256+256, 256)
block aggregate encoder (ga) Linear(256*(T+1), 256)

Decoder

block box decoder (dr) Linear(256, 256); Linear(256, 1)
edge decoder (dedge) Linear((256+N)*2, 256) ; Linear(256, 1)
lot initial decoder (dlot) Linear(256, 256*N)
node edge fuse decoder (h(t)

d), t = 0 Linear((256+N)*2, 256)
node edge fuse decoder (h(t)

d), t > 0 Linear(256+256, 256)
node exists decoder (glot) Linear(256*N ,1)
landuse head layer (glabel) Linear(256, 11)
bound head layer (gbound) Linear(256, 4)
merge head layer (gmerge) Linear(256, 2)

Table 4: Network Architectures. The default latent dimension is set to 256; N represents the block capacity (maximum
number of lots in a block) and T represents the number of iterations used in GNN message passing.

DEClot

drdedge dlot

...

... ei,k

ei,m ei,j

DEChidden

fkt

fjtfmt

fit+1
DEChidden

Message Passing

DEChidden

...

...
glot

gbox

glabel

gbound

gmerge

+ PE

DEClot

z

fi

or

or

...
Iterate
T times

Figure 18: Illustration of the graph decoder.

Figure 19: More generated samples with BlockPlanner, vi-
sualized in 3d software.

Geometry Validation. 1) Boundary alignment is validated
by comparing the true boundary and the decoded boundary.

Suppose s̃b = 0 with decoded geometry (x̃i,c, ỹi,c, w̃i, h̃i),
then the violation is calculated by | � 1 � (x̃i,c � w̃i/2)|,
where �1 is the true aligned boundary for x axis for sb = 0.
2) Adjacency validation is compared between the paired lot
geometries. For ẽi,j = 1, the violation is calculated via
max(|x̃i,c � x̃j,c|� (wi/2 + wj/2), 0), and vise versa.
Loss Weights. The weight of each loss term is empirically
set to wr, wx, ws, wg, wv = 10 : 5 : 2 : 1 : 2. We find
this setting achieves good results with relative faster conver-
gence. Note that, the impact of weights is not remarkable
when Ladj and Lbound are imposed.

C.4. Remarks on Evaluation Metrics
Realism. Realism is measured by an average user rating on
the visual fidelity. We carry out a user study with 10 ama-
teurs and 10 professionals with rasterized 2D plan images.
Samples generated by different methods are mixed with the
real building blocks (100 samples each) for users to distin-
guish. For each sample, the user is asked to give a score in
[0, 1, 2, 3, 4, 5], where 5 stands for a good and realistic look-
ing, and 0 for unrealistic looking and unreasonable config-
uration. The score for each sample is further normalized to
[0, 1], where the final score takes the summation over each
sample, expanding from 0 to 100 for each user. Our report
Realism is the average final score over all users.
FID. We adopt FID score [14] to measure the visual qual-
ity and diversity on 2D rasterized block layout, which is
widely used in floorplan generation evaluations [27, 28].
600 random fake samples are generated for each method,
and rasterized in 2D. For unfilled areas, we treat them as
vacant land use types and filled with darkgray color. Except
for BlockGAN, all land lots boxes are colored with black
boundaries to highlight lot instances, and compare with the
corresponding ground truth images with lot boundaries. For

BlockGAN, we render the image purely with colors to dif-
ferentiate land use types, and compare with corresponding
ground truth images without lot boundaries.
Land Use Statistics. The generated blocks should fol-
low the overall land use distribution of the real distribution.
Apart from the basic count distribution, i.e., the number of
lots per block, and the total portion of lots over land use cat-
egories, we also measure the one-step transition probability
that approximates a human’s experience of what one will
arrive from his current place to the neighboring lot 4.

D. Applications
Topology Refinements. The set of refinement parameters
X that we mentioned to control the translation (dx, dy) and
scaling magnitude (sx, sy) of each lot are as follows,

X = (Xdx, Xdy, Xsx, Xsy) 2 RN⇥4
. (8)

For lot with original generated shape (xc, yc, w, h, n), its
final 2D geometry is determined by,

(xc + dx, yc + dy, w(1 + sx), h(1 + sy)). (9)

The optimal parameter can be obtained by minimizing:

min
X

Dgap(r(G)) + �|X|2. (10)

where r(·) indicates the rendered layout, and Dgap(·) is the
accumulative gap areas. It also calculates the violation to
predicted order in the ring topology, including the too much
portion in the overlapping area. We use �|X|2 to constrain
the magnitude of changes, reflecting our desire to ask each
lot to maintain its original geometry as much as possible.
In practice, we use SGD optimizer in PyTorch and early-
stop the iteration once the objective loss is below a preset
tolerance ✏. In fact, users are free to choose proper objec-
tive functions, variables, or constraints to realize different
editing goals by means of optimization.
Footprint Generation. In the main paper, we showcase
one-step further to synthesize plausible building footprints
upon the generated block plans, i.e., to generate 3D building
models that reside in each land lot. However, simply replac-
ing each generated lot with an independently selected foot-
print from a fixed collection is neither ideal nor practical. a
strong correlation among footprint shapes within neighbor-
ing lots in a block can be observed given the land use type.
We wish to generate a plausible footprint for each lot within
block content conditioned on land use category. The task is

4Accessibility plays an important role in urban planning. Besides the
“street accessibility” we mentioned to introduce the lot attribute sm, here
we consider another type of accessibility in neighborhood evaluation.

If you are living in a block where its main land uses are residual houses,
your neighboring lots are likely to be residential building or some mix
residual and commercial land lots, such as the local grocery, to support
your daily consumer demands; while it is unlikely or even impossible to
have industrial land lots as your neighbors.

Figure 20: Illustration of footprint generation pipeline.

formulated as a classical image-to-image translation prob-
lem conditioned on the generated city blocks. An illustra-
tion is given in Fig. 20. We construct over 600 paired block
data for training, and adopt pix2pix [17] for demonstration.
The input image is the concatenation of lot bounding boxes
and the land use semantic map; and the output is the refined
footprint binary mask for each land use assembly.
From Manhattan to Brooklyn. Deep Network Interpo-
lation (DNI) [34] is a simple yet universal approach for
smooth and continuous imagery effect transition. We let
NMN with parameters ✓A be the network trained on Man-
hattan blocks, and finetune NMN on Brooklyn blocks for
another 100 epochs and denote as NBK with parameters
✓A. The smooth transition is achieved by interpolating the
model parameters across all layers with

✓interp = ↵✓A + (1� ↵)✓B . (11)

Extension to Indoor Scenes. Indoor scene is a natural ex-
tension to block plan generation, as they share many design
principles in common. While the land use semantics can be
directly replaced with room types, we made the following
adaptation to the ring topology: the peripheral rooms are de-
noted with sb 2 {0, 1, 2, 3} as usual; the ones that reside in
house interior are marked with sb = 4. Corresponding ge-
ometry validations are then added for those interior rooms.

E. Discussion and Future Works.
BlockPlanner is a brand new trial on city block modeling
with comprehensive consideration on block configuration
and land uses, learned with generative models. A lot of in-
teresting applications and extensions could be derived from.
Extension to larger scale. As the study unit of BlockPlan-
ner is individual blocks, the first-tier node in our current
graph representation only contains one element, serving as

the summary node for a block. This treatment can be nat-
urally extended to larger contents. For example, we can
allow multiple first-tier nodes to capture the city layouts at
the district or borough level, and even extend to multi-tier
graph representation for larger area urban modeling.
Generalization to new block styles. The hypotheses on
ring topology are set to model blocks in NYC. However, it
is a flexible setting where constraints can be adjusted to ac-
commodate new block styles. 1) Firstly, most city blocks
can be abstracted into a ring topology. By definition, a city
block is a group of buildings surrounded by streets with
most of the buildings directly accessible from streets. Thus
the ring topology well reflects this property and thus is a
suitable assumption for city block modeling. 2) As also
shown in Sec. 6.2 in the main text, our method also gener-
alizes well to irregular structure such as indoor floorplans,
which reveal that the ring topology assumption is not a hard
constraint, but a flexible one that allow certain relaxation.
For example, open spaces inside blocks can be treated as a
special lot category labeled as empty space; and the num-
ber of boundaries n can be modified along with geometric
constraints to model city blocks with polygonal shapes.
Extension to further city modeling steps. As mentioned
earlier, our city block data can be conveniently joined with
other data, such as the resourceful street view images tagged
with geo-locations. It is therefore possible to extract build-
ing image textures directly from street view images, and
well aligned with the block models. With such paired data,
more interesting learning tasks can therefore be formulated.
This may complete the auto-texturing step in city model-
ing, realizing vivid city block models for visualization, and
provide the foundation towards more realistic renderings.
Adaptation to other cities. The proposed BlockPlanner
system can be directly applied to cities other than NYC.
While not all the cities have public open data that includes
enough information as that in PLUTO, various alternative
sources can be utilized: Google Maps, OpenStreetMap, etc.
Applications beyond Virtual Environments. BlockPlan-
ner can serve as a powerful tool for designers to improve/re-
design the current block 1) In real scenarios, urban design-
ers always need to manually generate large amounts of pro-
posals before finalizing. To avoid such challenging and te-
dious work, BlockPlanner provides a novel tool to obtain
large amounts of diverse and valid block proposals automat-
ically, and the generated blocks in vector format can get fur-
ther edited and visualized in other tools. 2) We can also im-
prove an existing block by shifting its latent code towards a
desired direction, such as re-zoning from commercial to res-
idential use, or interpolating between different block styles.
Limitations and future works. While our experiments
demonstrate good performance on synthesizing city blocks
under the canonical view, it will be our future work to make
BlockPlanner more versatile in handling a broader range of

city blocks in the real world. It is also interesting to exper-
iment with more incorporated block features, especially for
those social and environmental indexes to reveal their un-
derlying connection, thus helping us better understand our
living city through the machine eyes.

Figure 21: Sample Manhattan blocks extracted from PLUTO without canonicalization.

Figure 22: More generated results on BlockPlanner.

Figure 23: Real samples without the annotated lot boundary lines.

Figure 24: Generated samples with BlockGAN (with fuzzy boundary).

