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-Supplementary Material-

1. Detailed Quantitative Results

We present per-class segmentation results in terms of
IoU on both the val and test sets of PASCAL VOC, and
the val set of MS COCO in Table 1, Table 2 and Table 4, re-
spectively. These quantitative results indicate that the pro-
posed AuxSegNet outperforms other state-of-the-art meth-
ods on most class categories, further demonstrating the su-
perior performance of the proposed approach.

Table 3 shows ablation studies based on the per-class
segmentation IoU on the PASCAL VOC val set. We ob-
serve that leveraging multi-task auxiliary learning brings a
significant improvement of 3.9% in terms of mIoU, com-
pared to the baseline method which uses the raw CAM maps
to generate pseudo segmentation labels and trains a single-
task model for semantic segmentation. By learning cross-
task affinities to refine both task-specific representations
and predictions, the proposed AuxSegNet attains a further
performance gain of 3.3%. In addition, iteratively learning
the entire network with updated pseudo labels refined by
the learned cross-task affinities gives another performance
boost of 2%. As a result, the accuracy of most class cat-
egories is significantly improved, leading to an overall in-
crease of 9.2% in mIoU. This quantitatively demonstrates
the effectiveness of our proposed method.

2. Additional Qualitative Results

More examples of qualitative segmentation results of our
proposed method on the val sets of PASCAL VOC and MS
COCO datasets are shown in Figure 1 and 2, respectively.
These results show that our method can achieve satisfactory
segmentation performance on various challenging scenes
with a robust prediction of details.

We present more examples of CAM maps which are used
to generate segmentation pseudo labels for each training
stage (s=0,1,2,3) on PASCAL VOC and MS COCO train
sets as shown in Figure 3 and Figure 4, respectively. The
raw CAM maps without refinement for stage 0 (s=0) only
focus on the local discriminative object regions of large-
scale objects, such as the head and hands of the person or

wheels of the bus. For small-scale objects, the raw CAM
maps tend to over-activate the object regions, resulting in
poor boundaries. In contrast, by using the proposed learned
cross-task affinities for refinement, the resulted CAM maps
(s=1) cover more object regions including those less dis-
criminative ones for large-scale objects. These CAM maps
are also better aligned with the boundaries of small-scale
objects. Furthermore, with a few more stages of affinity
learning and label updating (s=2,3), the refined CAM maps
become more complete with more accurate boundaries.



Table 1. Per-class performance comparison with the state-of-the-art WSSS methods in terms of IoUs (%) on the PASCAL VOC val set.
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tv mIoU
DSRG [7] - - - - - - - - - - - - - - - - - - - - - 61.4

MCOF [13] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3
AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

SeeNet [6] - - - - - - - - - - - - - - - - - - - - - 63.1
FickleNet [10] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9

OAA+ [8] - - - - - - - - - - - - - - - - - - - - - 65.2
Zeng et al. [15] 90.0 77.4 37.5 80.7 61.6 67.9 81.8 69.0 83.7 13.6 79.4 23.3 78.0 75.3 71.4 68.1 35.2 78.2 32.5 75.5 48.0 63.3

CIAN [5] 88.2 79.5 32.6 75.7 56.8 72.1 85.3 72.9 81.7 27.6 73.3 39.8 76.4 77.0 74.9 66.8 46.6 81.0 29.1 60.4 53.3 64.3
Zhang et al. [16] 87.9 75.9 31.7 78.3 54.6 62.2 80.5 73.7 71.2 30.5 67.4 40.9 71.8 66.2 70.3 72.6 49.0 70.7 38.4 62.7 58.4 62.6
Luo et al. [11] 88.6 64.1 35.4 78.8 50.8 61.0 85.8 77.7 84.6 26.7 75.2 40.8 79.1 77.4 76.0 70.4 48.3 69.2 39.0 69.9 58.3 64.5

Chang et al. [3] 88.8 51.6 30.3 82.9 53.0 75.8 88.6 74.8 86.6 32.4 79.9 53.8 82.3 78.5 70.4 71.2 40.2 78.3 42.9 66.8 58.8 66.1
ICD [4] - - - - - - - - - - - - - - - - - - - - - 67.8

Araslanov et al. [2] 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
SEAM [14] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5

Zhang et al. [18] 90.4 85.6 38.9 78.9 62.0 73.4 83.7 74.3 82.9 25.8 77.8 30.1 81.1 79.3 76.1 73.9 38.6 85.0 32.7 72.8 55.7 66.6
Sun et al. [12] - - - - - - - - - - - - - - - - - - - - - 66.2
CONTA [17] - - - - - - - - - - - - - - - - - - - - - 66.1

AuxSegNet(Ours) 91.7 82.5 38.2 84.3 67.4 76.7 85.0 79.8 90.7 24.5 81.2 22.7 86.7 78.7 76.0 82.2 37.9 86.4 39.3 75.6 61.0 69.0

Table 2. Per-class performance comparison with the state-of-the-art WSSS methods in terms of IoUs (%) on the PASCAL VOC test set.
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tv mIoU
DSRG [7] - - - - - - - - - - - - - - - - - - - - - 63.2

MCOF [13] 88.2 80.8 31.4 70.9 34.9 65.7 83.5 75.1 79.0 22.0 70.3 31.7 77.7 72.9 77.1 56.9 41.8 74.9 36.6 71.2 42.6 61.2
AffinityNet [1] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7

SeeNet [6] - - - - - - - - - - - - - - - - - - - - - 62.8
FickleNet [10] 89.8 78.3 34.1 73.4 41.2 67.2 81.0 77.3 81.2 29.1 72.4 47.2 76.8 76.5 76.1 72.9 56.5 82.9 43.6 48.7 64.7 65.3

OAA+[8] - - - - - - - - - - - - - - - - - - - - - 66.4
Zeng et al. [15] 90.4 85.4 37.9 77.2 48.2 64.5 83.9 74.8 83.4 15.9 72.4 34.3 80.0 77.3 78.5 69.0 41.9 76.3 38.3 72.3 48.2 64.3

CIAN [5] - - - - - - - - - - - - - - - - - - - - - 65.3
Zhang et al. [16] 87.8 77.5 30.8 71.7 36.0 64.2 75.3 70.4 81.7 29.3 70.4 52.0 78.6 73.8 74.4 72.1 54.2 75.2 50.6 42.0 52.5 62.9
Luo et al. [11] - - - - - - - - - - - - - - - - - - - - - 64.6

Chang et al. [3] - - - - - - - - - - - - - - - - - - - - - 65.9
ICD[4] - - - - - - - - - - - - - - - - - - - - - 68.0

Araslanov et al. [2] 89.2 73.4 37.3 68.3 45.8 68.0 72.7 64.1 74.1 32.9 74.9 39.2 81.3 74.6 72.6 75.4 58.1 71.0 48.7 67.7 60.1 64.3
SEAM[14] - - - - - - - - - - - - - - - - - - - - - 65.7

Zhang et al. [18] 90.7 85.9 37.3 82.5 50.5 64.8 83.1 77.6 82.8 28.4 76.8 34.6 81.2 82.9 80.5 73.6 43.9 85.7 32.0 71.7 55.2 66.7
Sun et al. [12] - - - - - - - - - - - - - - - - - - - - - 66.9
CONTA [17] - - - - - - - - - - - - - - - - - - - - - 66.7

AuxSegNet(Ours) 91.6 85.1 39.4 80.0 51.4 69.9 81.4 79.9 86.5 26.6 75.3 29.7 81.7 83.6 78.0 83.1 56.1 84.5 39.8 77.2 60.9 68.6

Table 3. Segmentation results of our proposed method in terms of IoUs (%) on the PASCAL VOC val set. MT, CT and IL denote the
proposed multi-task auxiliary learning, cross-task affinity learning and iterative learning, respectively. No post-processing steps are used
in these ablation analysis.
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Baseline 86.6 60.0 30.8 67.5 50.8 55.4 73.3 70.7 71.8 24.0 63.2 23.1 63.9 60.4 66.9 69.6 33.9 68.4 31.5 64.5 57.8 56.9

AuxSegNet (MT) 88.6 70.3 34.5 74.1 54.9 60.3 77.5 73.1 73.1 25.2 65.8 26.5 69.5 64.3 71.5 72.9 36.3 72.2 32.6 70.4 60.6 60.8
AuxSegNet (MT+CT) 90.1 74.5 38.3 77.5 60.0 66.6 82.0 76.6 82.1 26.7 70.3 23.2 76.1 67.1 76.0 75.6 38.9 77.8 34.5 71.2 61.1 64.1

AuxSegNet (MT+CT+IL) 91.0 80.4 38.2 79.0 65.1 71.5 82.8 78.2 87.5 25.3 73.9 18.3 83.0 71.0 75.4 79.2 38.9 78.1 36.5 73.9 61.4 66.1
Overall Improvement +4.4 +20.4 +7.4 +11.5 +14.3 +16.1 +9.5 +7.5 +15.7 +1.3 +10.7 -4.8 +19.1 +10.6 +8.5 +9.6 +5.0 +9.7 +5.0 +9.4 +3.6 +9.2
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Table 4. Per-class performance comparison with the state-of-the-art WSSS methods in terms of IoU(%) on the MS COCO val set.

Class
SEC DSRG Luo et al. Ours Class SEC DSRG Luo et al. Ours[9] [7] [11] [9] [7] [11]

background 74.3 80.6 73.9 82.0 wine class 22.3 24.0 27.2 32.1
person 43.6 - 48.7 65.4 cup 17.9 20.4 21.7 29.3
bicycle 24.2 30.4 45.0 43.0 fork 1.8 0.0 0.0 5.4
car 15.9 22.1 31.5 34.5 knife 1.4 5.0 0.9 1.4
motorcycle 52.1 54.2 59.1 66.2 spoon 0.6 0.5 0.0 1.4
airplane 36.6 45.2 26.9 60.3 bowl 12.5 18.8 7.6 19.5
bus 37.7 38.7 52.4 63.1 banana 43.6 46.4 52.0 46.9
train 30.1 33.2 42.4 57.3 apple 23.6 24.3 28.8 40.4
truck 24.1 25.9 36.9 38.9 sandwich 22.8 24.5 37.4 39.4
boat 17.3 20.6 23.5 30.1 orange 44.3 41.2 52.0 52.9
traffic light 16.7 16.1 13.3 40.4 broccoli 36.8 35.7 33.7 36.0
fire hydrant 55.9 60.4 45.1 72.7 carrot 6.7 15.3 29.0 13.9
stop sign 48.4 51.0 43.4 40.3 hot dog 31.2 24.9 38.8 46.1
parking meter 25.2 26.3 33.5 59.8 pizza 50.9 56.2 69.8 62.0
bench 16.4 22.3 26.3 16.0 donut 32.8 34.2 50.8 43.9
bird 34.7 41.5 29.9 61.0 cake 12.0 6.9 37.3 30.6
cat 57.2 62.2 62.1 68.6 chair 7.8 9.7 10.7 11.4
dog 45.2 55.6 57.5 66.9 couch 5.6 17.7 9.4 14.5
horse 34.4 42.3 40.7 55.6 potted plant 6.2 14.3 21.8 2.1
sheep 40.3 47.1 54.0 61.4 bed 23.4 32.4 34.6 20.5
cow 41.4 49.3 47.2 60.7 dining table 0.0 3.8 1.1 9.5
elephant 62.9 67.1 64.3 76.1 toilet 38.5 43.6 43.8 57.8
bear 59.1 62.6 58.9 73.0 tv 19.2 25.3 11.5 36.0
zebra 59.8 63.2 60.7 80.8 laptop 20.1 21.1 37.0 35.2
giraffe 48.8 54.3 45.1 71.6 mouse 3.5 0.9 0.0 13.4
backpack 0.3 0.2 0.0 11.3 remote 17.5 20.6 37.2 23.6
umbrella 26.0 35.3 46.1 35.0 keyboard 12.5 12.3 19.0 17.9
handbag 0.5 0.7 0.0 2.2 cellphone 32.1 33.0 38.1 49.9
tie 6.5 7.0 15.5 14.7 microwave 8.2 11.2 43.4 28.7
suitcase 16.7 23.4 43.6 31.7 oven 13.7 12.4 29.2 13.3
frisbee 12.3 13.0 23.2 1.0 toaster 0.0 0.0 0.0 0.0
skis 1.6 1.5 6.5 8.1 sink 10.8 17.8 28.5 21.0
snowboard 5.3 16.3 10.9 7.6 refrigerator 4.0 15.5 23.8 16.6
sports ball 7.9 9.8 0.6 28.8 book 0.4 12.3 26.3 8.7
kite 9.1 17.4 14.0 27.3 clock 17.8 20.7 13.4 34.4
baseball bat 1.0 4.8 0.0 2.2 vase 18.4 23.9 27.1 25.9
baseball globe 0.6 1.2 0.0 1.3 scissors 16.5 17.3 37.0 16.6
skateboard 7.1 14.4 7.6 15.2 teddy bear 47.0 46.3 58.9 47.3
surfboard 7.7 13.5 17.6 17.8 hair drier 0.0 0.0 0.0 0.0
tennis racket 9.1 6.8 38.1 47.1 toothbrush 2.8 2.0 11.1 1.4
bottle 13.2 22.3 28.4 33.2 mIoU 22.4 26.0 29.9 33.9
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InSXW GUoXnd-WUXWh OXUV InSXW GUoXnd-WUXWh OXUV

Figure 1. Qualitative segmentation results on the PASCAL VOC val set.
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InSXW GUoXnd-WUXWh OXUV InSXW GUoXnd-WUXWh OXUV

Figure 2. Qualitative segmentation results on the MS COCO val set.
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InpXW V=0 V=1 V=2 V=3

Figure 3. Visualization of CAM maps with iterative improvements on the PASCAL VOC train set. (Only the CAM map of the dominant
class is shown for each input image.)
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InpXW V=3V=0 V=2V=1

Figure 4. Visualization of CAM maps with iterative improvements on the MS COCO train set. (Only the CAM map of the dominant class
is shown for each input image.)
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