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1. Overview

This supplementary material provides more details on
experiments in the main paper and includes more experi-
ments to validate and analyze our proposed method.

In Sec. 2, we describe details in two data generation man-
ners for point cloud registration, which are proposed by PR-
Net [7] and RPMNet [10] separately. In Sec. 3, we show
more experimental results including the performance on the
validation and test sets, which are generated by the above
two pre-processing manners.

2. Details in Experiments

In this section, we describe two data preparation manners
for the partial-to-partial point cloud registration. One of
the manners proposed by PRNet [7] is detailed in Sec. 2.1,
while the other used in RPMNet [10] is described in
Sec. 2.2. Fig. 1 illustrates some examples of the partial-
to-partial data, which shows the difference between these
two pre-processing manners.

2.1. Data Generation Manner of PRNet

We use this manner to generate data for the first three
experiments on the ModelNet40 dataset in our main paper.
Two point clouds are randomly chosen from 40 sampled
point clouds as the source point cloud X and reference point
cloud Y respectively, each of which contains 2,048 points.
Along each axis, we randomly draw a rigid transformation:
the rotation along each axis is sampled in [0◦, 45◦] and the
translation is in [−0.5, 0.5]. The rigid transformation is ap-
plied to Y, leading to X. After that, we simultaneously par-
tial X and Y by randomly placing a point in space and com-
puting its 768 nearest neighbors in X and Y respectively.
The left column in Fig. 1 shows some examples. However,
the point clouds X and Y are similar in most cases, which
means that the overlapping ratio is large.
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Figure 1. Some examples of the partial-to-partial data. The left
and right columns denote the point clouds that are processed in
the manner of PRNet and RPMNet respectively. All of them are
registered by the ground truth transformations. Blue denotes the
source point cloud X and red denotes the reference point cloud Y.
The pairs of RPMNet are more decentralized than those of PRNet.

2.2. Data Generation Manner of RPMNet

We use this manner to generate data for the last experi-
ment on the ModelNet40 dataset in our main paper. We use
the same approach as which in RPMNet to obtain the source
point cloud X and the reference point cloud Y. For each
point cloud, we sample a half-space with a random direc-
tion and shift it such that approximately 70% of the points
are retained. Then, the point clouds are downsampled to
717 points to maintain a similar point density as the pre-
vious experiments. We sample rotations by sampling three
Euler angle rotations in the range [0◦, 45◦] and translations
in the range [−0.5, 0.5] on each axis. The rigid transfor-
mation is applied to X, leading to Y, which is opposite to



RMSE(R) MAE(R) Error(R)
Method

OS TS OS TS OS TS

RPMNet [10] 0.312 6.531 0.200 2.972 0.432 8.454
PRNet [7] 5.979 13.773 3.779 9.670 7.714 20.692
IDAM [4] 1.605 7.725 0.905 4.364 1.850 10.940
Ours 0.766 6.258 0.347 2.877 0.873 8.606

Table 1. Results on 8 axisymmetrical categories in ModelNet40.
OS and TS denotes the results on the once-sampled and our twice-
sampled data separately. The performances of all methods are de-
creasing when changing the data sampling manner from OS to TS.

PRNet. The right column in Fig. 1 shows some examples.
The points in X and Y are more decentralized than those
generated in the manner of PRNet, which means that the
overlapping ratio is small in some cases. As a result, it is
more difficult to register with this data.

3. More Experiments on ModelNet40
In this section, we provide more experimental results on

ModelNet40 [8] dataset to validate the robustness and ef-
fectiveness of our method. First, we show the decrement
of performances between evaluating on the once-sampled
(OS) and the twice-sampled (TS) data in Sec. 3.1, which
demonstrates the over-fitting issue. Then, we show the re-
sults on the test set that generated in the manner of PRNet
in Sec. 3.2, and the results on the dataset that generated in
the manner of RPMNet are shown in Sec. 3.3. Besides, the
comparison of speed shows the computational efficiency of
our method in Sec. 3.4. Finally, Sec. 3.5 explores that how
many iterations are needed.

3.1. Over-fitting Issue

In this experiment, we demonstrate that deep learning
(DL) based methods can easily over-fit the original data
distribution even with added noises, as shown in Table 1.
Note that we train and evaluate on 8 axisymmetrical cat-
egories, where point clouds are only rotated at the z-axis.
We can find that all partial-to-partial methods can achieve
good performances on the OS data, however, performances
are obviously decreasing when only changing the data sam-
pling manner from OS to TS. As a result, all the methods can
over-fit the distribution of OS data, while failing to register
the axisymmetrical TS data.

3.2. Results on PRNet dataset

In our main paper, we only show the results on the vali-
dation set with Gaussian noise generated in the partial man-
ner of PRNet [7]. To further demonstrate the robustness of
our method, we show results on the unseen categories with
Gaussian noise. We add noises sampled from N (0, 0.012)
and clipped to [−0.05, 0.05] on each axis, then repeat the
second experiment (unseen categories) in our main paper.

ICP FGR PointNetLK DCP PRNet FMR RPMNet IDAM DeepGMR# points [2] [12] [1] [6] [7] [3] [10] [4] [11] Ours

512 33 37 73 15 79 138 58 27 9 24
1024 56 92 77 17 84 158 115 28 9 25
2048 107 237 83 26 114 295 271 33 9 27
4096 271 673 89 88 - 764 726 62 10 32

Table 2. Speed comparison for registering a point cloud pair of
various sizes (in milliseconds). The missing result in the table is
due to the limitation in GPU memory.

Table 3 shows the performances of various methods. Our
method achieves accurate registration and ranks first.

3.3. Results on RPMNet dataset

In this subsection, we show 4 experimental results on
the ModelNet40 dataset with or without Gaussian noise that
generated in the data partial manner of RPMNet [10].

Unseen Shapes. In this experiment, we train the models
on the training set of the first 14 categories and evaluate the
registration performances on the validation set of the same
categories without noise. Table 4(a) shows the results.

We can find that all traditional methods and most DL
based methods perform poorly because of the large differ-
ence in initial positions and partiality. Note that the normals
are calculated after the data pre-processing, so that the nor-
mals of points in X can be different from their correspon-
dences in Y. Although Go-ICP [9] attempts to improve
the performance of the original ICP [2] by adopting a brute-
force branch-and-bound strategy, it may not suitable for this
scene and brings negative implications. Our method out-
performs all the traditional and DL based methods except 3
metrics on the OS data compared with RPMNet.

Unseen Categories. We evaluate the performance on un-
seen categories without noise in this experiment. The mod-
els are trained on the first 14 categories and tested on the
other 18 categories. The results are summarized in Ta-
ble 4(b). We can find that the performances of all DL based
methods become worse without training on the same cat-
egories. Nevertheless, the traditional methods are not af-
fected so much due to the handcrafted features. Our method
outperforms all the traditional and DL based methods.

Gaussian Noise. To evaluate the capability of robustness
to noise, we add noises sampled from N (0, 0.012) on each
axis and clipped to [−0.05, 0.05], then repeat the first two
experiments (unseen shapes and unseen categories). Ta-
ble 4(c)(d) show the performances of different algorithms.
FGR [12] is sensitive to noise, so that it performs much
worse than the noise-free case. Almost all the DL based
methods become worse with noise injected. Our method
achieves the best performance compared to all competitors.

3.4. Efficiency

We profile the inference times in Table 2. We test DL
based models on a NVIDIA RTX 2080Ti GPU and two 2.10
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Figure 2. Anisotropic and isotropic errors of our method over reg-
istration iterations.

GHz Intel Xeon Gold 6130 CPUs for the other methods.
For our approach, we provide the time of N = 4 iterations.
The computational time is averaged over the entire test set.
The speeds of traditional methods are variant under differ-
ent settings. Note that ICP is accelerated using the k-D tree.
We do not compare with Go-ICP because its obviously slow
speed. Our method is faster especially with large inputs but
is slower than the non-iterative DCP and DeepGMR.

3.5. Number of Iterations

The model is trained with different iterations to show
that how many iterations are needed. The anisotropic and
isotropic errors are calculated after each iteration, as illus-
trated in Fig. 2. We can find that most performance gains
are in the first two iterations, and we choose N = 4 for the
trade-off between the speed and the accuracy in all experi-
ments.



Method
RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)

OS TS OS TS OS TS OS TS OS TS OS TS
ICP [2] 17.439 18.588 8.954 9.628 0.0848 0.0920 0.0460 0.0521 17.435 18.720 0.0905 0.1026
Go-ICP [9] 13.081 15.214 3.617 4.650 0.0455 0.0566 0.0169 0.0223 7.184 9.002 0.0334 0.0445
Symmetric ICP [5] 6.447 7.096 5.790 6.280 0.0615 0.0688 0.0552 0.0617 11.340 12.531 0.1065 0.1191
FGR [12] 19.027 33.723 8.383 19.268 0.1041 0.1593 0.0498 0.0914 15.902 35.971 0.0981 0.1828
PointNetLK [1] 27.589 29.747 16.047 18.550 0.1516 0.1841 0.0955 0.1081 30.406 32.760 0.1907 0.1959
DCP [6] 7.353 7.300 4.923 4.378 0.0657 0.0389 0.0451 0.0272 9.624 8.853 0.0902 0.0539
PRNet [7] 3.241 5.883 1.632 3.037 0.0181 0.0380 0.0127 0.0237 3.095 5.974 0.0254 0.0472
FMR [3] 4.819 5.304 2.488 2.779 0.0345 0.0323 0.0158 0.0172 4.824 5.392 0.0313 0.0342
IDAM [4] 5.188 8.008 3.114 4.559 0.0377 0.0484 0.0208 0.0291 5.836 8.774 0.0418 0.0578
Ours 2.203 2.563 0.910 1.215 0.0155 0.0183 0.0078 0.0098 1.809 2.360 0.0156 0.0196

Table 3. Results on point clouds of unseen categories with Gaussian noise in ModelNet40, which are generated in the manner of PRNet.
Red indicates the best performance and blue indicates the second-best result.

RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)
Method

OS TS OS TS OS TS OS TS OS TS OS TS

ICP [2] 20.036 22.840 10.912 12.147 0.1893 0.1931 0.1191 0.1217 22.232 24.654 0.2597 0.2612
Go-ICP [9] 70.776 71.077 39.000 38.266 0.3111 0.3446 0.1807 0.1936 71.597 76.492 0.3996 0.4324
Symmetric ICP [5] 10.419 11.295 8.992 9.592 0.1367 0.1394 0.1082 0.1124 17.954 19.571 0.2367 0.2414
FGR [12] 48.533 46.766 29.661 29.635 0.2920 0.3041 0.1965 0.2078 55.855 57.685 0.4068 0.4263
PointNetLK [1] 23.866 27.482 15.070 18.627 0.2368 0.2532 0.1623 0.1778 29.374 36.947 0.3454 0.3691
DCP [6] 12.217 11.109 9.054 8.454 0.0695 0.0851 0.0524 0.0599 7.835 9.216 0.1049 0.1259
RPMNet [10] 1.347 2.162 0.759 1.135 0.0228 0.0267 0.0089 0.0141 1.446 2.280 0.0193 0.0302
FMR [3] 7.642 8.033 4.823 4.999 0.1208 0.1187 0.0723 0.0726 9.210 9.741 0.1634 0.1617
DeepGMR [11] 72.310 70.886 49.769 47.853 0.3443 0.3703 0.2462 0.2582 82.652 86.444 0.5044 0.5354
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Ours 0.771 1.384 0.277 0.542 0.0154 0.0226 0.0056 0.0093 0.561 1.118 0.0122 0.0198

ICP [2] 20.387 22.906 12.651 13.599 0.1887 0.1994 0.1241 0.1286 25.085 26.819 0.2626 0.2700
Go-ICP [9] 69.747 64.455 39.646 34.017 0.3035 0.3196 0.1788 0.1888 68.329 68.920 0.3893 0.4091
Symmetric ICP [5] 12.291 12.333 10.841 10.746 0.1488 0.1456 0.1212 0.1186 21.399 21.437 0.2577 0.2521
FGR [12] 46.161 41.644 27.475 26.193 0.2763 0.2872 0.1818 0.1951 49.749 51.463 0.3745 0.4003
PointNetLK [1] 27.903 42.777 18.661 28.969 0.2525 0.3210 0.1752 0.2258 36.741 53.307 0.3671 0.4613
DCP [6] 13.387 12.507 9.971 9.414 0.0762 0.1020 0.0570 0.0730 11.128 12.102 0.1143 0.1493
RPMNet [10] 3.934 7.491 1.385 2.403 0.0441 0.0575 0.0150 0.0258 2.606 4.635 0.0318 0.0556
FMR [3] 10.365 11.548 6.465 7.109 0.1301 0.1330 0.0816 0.0837 12.159 13.827 0.1773 0.1817
DeepGMR [11] 75.773 68.425 53.689 46.269 0.3485 0.3667 0.2481 0.2595 85.210 87.192 0.5074 0.5323(b
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Ours 3.719 4.014 1.314 1.619 0.0392 0.0406 0.0151 0.0179 2.657 3.206 0.0321 0.0383

ICP [2] 20.245 23.174 11.134 12.405 0.1902 0.1932 0.1214 0.1231 22.580 25.147 0.2634 0.2639
Go-ICP [9] 72.221 72.030 40.516 39.308 0.3162 0.3468 0.1860 0.1977 74.420 77.519 0.4089 0.4405
Symmetric ICP [5] 11.087 11.731 9.671 10.042 0.1453 0.1436 0.1157 0.1163 19.174 20.292 0.2517 0.2486
FGR [12] 53.186 47.816 33.189 30.572 0.3059 0.3149 0.2117 0.2185 63.019 59.759 0.4368 0.4459
PointNetLK [1] 24.162 26.235 16.222 17.874 0.2369 0.2582 0.1684 0.1805 32.108 36.109 0.3555 0.3771
DCP [6] 12.387 12.393 9.147 9.534 0.0656 0.1008 0.0495 0.0717 8.341 8.955 0.0989 0.1516
RPMNet [10] 1.670 2.955 0.889 1.374 0.0310 0.0360 0.0111 0.0163 1.692 2.746 0.0242 0.0353
FMR [3] 8.026 8.591 5.051 5.303 0.1244 0.1249 0.0755 0.0776 9.657 10.383 0.1702 0.1719
DeepGMR [11] 74.958 70.810 52.119 47.954 0.3520 0.3689 0.2538 0.2597 86.935 87.444 0.5189 0.5360(c
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Ours 0.998 1.522 0.555 0.817 0.0172 0.0189 0.0078 0.0098 1.078 1.622 0.0167 0.0208

ICP [2] 20.566 21.893 12.786 13.402 0.1917 0.1963 0.1265 0.1278 25.417 26.632 0.2667 0.2679
Go-ICP [9] 70.417 65.402 40.303 34.988 0.3072 0.3233 0.1822 0.1929 69.175 71.054 0.3962 0.4170
Symmetric ICP [5] 12.183 12.576 10.723 10.987 0.1487 0.1478 0.1210 0.1203 21.169 21.807 0.2576 0.2560
FGR [12] 49.133 46.213 31.347 30.116 0.3002 0.3034 0.2068 0.2141 56.652 58.968 0.4230 0.4364
PointNetLK [1] 26.476 29.733 19.258 21.154 0.2542 0.2670 0.1853 0.1937 37.688 42.027 0.3831 0.3964
DCP [6] 13.117 12.730 9.741 9.556 0.0779 0.1072 0.0591 0.0774 11.350 12.173 0.1187 0.1586
RPMNet [10] 4.118 6.160 1.589 2.467 0.0467 0.0618 0.0175 0.0274 2.983 4.913 0.0378 0.0589
FMR [3] 10.604 11.674 6.725 7.400 0.1300 0.1364 0.0827 0.0867 12.627 14.121 0.1788 0.1870
DeepGMR [11] 75.257 68.560 53.470 46.579 0.3509 0.3735 0.2519 0.2654 84.121 87.104 0.5180 0.5455(d
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Ours 3.572 4.356 1.570 1.924 0.0391 0.0486 0.0172 0.0223 3.073 3.834 0.0359 0.0476

Table 4. Results on point clouds of unseen shapes in ModelNet40, which are generated in the manner of RPMNet.
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Figure 3. Results on the Stanford 3D Scan dataset. The model is trained on the training set on ModelNet40, and no fine-tuning is done on
Stanford 3D Scan. In each cell separated by the horizontal line, the top row shows the initial positions of the two point clouds, and the
bottom row shows the results of registration. Anisotropic and isotropic errors of each result is shown bellow the point clouds.
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