
A. Explanation of the Symbols

Table 4. Explanation of Symbols
Symbol Definition
I frames from the video
M masks represented valid regions of each frame
Î coarse aligned frames
M̂ masks represented valid regions of each frame

after coarse alignment
H the height of each frame
W the width of each frame
Op the optical flow from coarse aligned frame to

current frame
Õp the reversed optical flow
M̃ the reversed mask to denote the in boundary re-

gions in coarse aligned frames
G the edge extracted from current frames
Ĝ the edge extracted from coarse aligned frames
F the features extracted by the encoder
D the features generated by the decoder
κ estimated affinity matrices
B refined optical flow after propagation
Îe the extrapolated images
M̂e the masks represented the valid regions after ex-

trapolation
Ĝe the edges of extrapolated images

B. More Visual Comparison Results

In this section, we provide more visual comparison re-
sults by different methods with or without the use of our
OVS method for video stabilization. In addition to the re-
sults of DUT [34], DIFRINT [5], Meshflow [21] and Yu
et al. [38] provided in the main paper, we here provide the
results by other two representative warping-based methods,
i.e., PWStabNet [45] and StabNet [31], for a comprehen-
sive comparison, as shown in Figure 7. It is clear that there
is less content loss in the results of both PWStabNet and
StabNet after incorporating OVS, demonstrating that OVS
can effectively synthesize the out-of-boundary view to facil-
itate the warping processing in these methods. In addition,
the distortion artifacts are also reduced, e.g., the building in
the third column has less distortions with the help of OVS.
Note that the results of PWStabNet and StabNet still have
some content loss after stabilization since we only used the
default 10 iterations in OVS to improve the cropping ratio.
The content loss could be alleviated as the number of itera-
tions increases.

We also provide a side-by-side comparison between
DIFRINT [5] and our OVS based on DUT [34]. The re-
sults are shown in Figure 8. As can be seen, DIFRINT
brings a zoom-in effect in the stabilized results, e.g., the
tree in the first row and the tower in the third row are am-
plified while some content around the boundary are missed.
On the contrary, our OVS can retain more content in the
stabilized results, especially around the boundary. Besides,
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Figure 7. Visual comparison between PWStabNet [45] and StabNet [31]. * means stabilizers integrated with our OVS method.



Regular QuickRot Parallax Crowd Running Average
C D S C D S C D S C D S C D S C D S

DIFRINT 0.939 0.934 0.838 0.953 0.633 0.826 0.946 0.922 0.817 0.939 0.910 0.809 0.938 0.871 0.825 0.943 0.854 0.823
PWStabNet 0.890 0.918 0.843 0.883 0.932 0.870 0.891 0.947 0.816 0.888 0.947 0.804 0.833 0.874 0.815 0.877 0.924 0.830
PWStabNet + OVS 0.968 0.965 0.846 0.952 0.934 0.869 0.958 0.961 0.819 0.959 0.961 0.806 0.957 0.961 0.818 0.959 0.957 0.831
Yu et.al 0.878 0.925 0.849 0.844 0.221 0.763 0.816 0.836 0.819 0.875 0.832 0.811 0.725 0.797 0.830 0.827 0.722 0.814
Yu et.al + OVS 0.968 0.939 0.852 0.861 0.362 0.845 0.929 0.876 0.826 0.930 0.899 0.811 0.920 0.845 0.835 0.922 0.784 0.834
StabNet 0.748 0.821 0.694 0.654 0.528 0.798 0.670 0.789 0.736 0.667 0.798 0.739 0.639 0.722 0.740 0.676 0.731 0.741
StabNet + OVS 0.818 0.875 0.697 0.738 0.699 0.815 0.755 0.872 0.736 0.733 0.829 0.742 0.772 0.868 0.752 0.763 0.829 0.749
Meshflow 0.751 0.891 0.851 0.819 0.302 0.783 0.773 0.681 0.799 0.751 0.776 0.784 0.757 0.715 0.848 0.770 0.673 0.813
MeshFlow + OVS 0.889 0.908 0.854 0.936 0.333 0.800 0.859 0.669 0.805 0.897 0.753 0.800 0.911 0.754 0.856 0.898 0.683 0.823
DUT 0.924 0.952 0.850 0.834 0.841 0.882 0.883 0.904 0.829 0.896 0.927 0.818 0.797 0.848 0.845 0.867 0.895 0.845
DUT + OVS 0.989 0.960 0.852 0.941 0.872 0.880 0.962 0.905 0.834 0.977 0.937 0.817 0.968 0.902 0.850 0.967 0.915 0.847
DUT + OVS* 0.999 0.981 0.853 0.998 0.929 0.881 0.998 0.943 0.837 0.999 0.953 0.818 0.999 0.918 0.854 0.999 0.944 0.849
Table 5. Category-wise objective metrics of different stabilizers. C, D, S are the abbreviations for Cropping ratio, Distortion, and Stability,
respectively. “+OVS” means the stabilizer uses our OVS. * denotes the full-frame version of our OVS method.
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Figure 8. Side-by-side comparison between DIFRINT [5] and our
OVS (based on DUT [34]). Red arrows indicate the content loss
and blue arrows indicate the ghost artifacts.

DIFRINT produces obvious ghost artifacts in the results.
We suspect that the interpolation process in DIFRINT uses
inaccurate optical flow due to large jitter and object motion,
resulting in ghost artifacts, especially around sharp edges
and dynamic objects. In contrast, our OVS based DUT [34]
have no such a drawback by exploiting the spatial coherence
property in the video.

C. Category-wise Results of Objective Metrics

In Table 5, we provide the category-wise objective met-
rics of the warping-based stabilizers [21, 31, 45, 38, 34] and
the interpolation-based one [5]. As can be seen, our OVS
significantly improves the cropping ratio of the warping-
based stabilizers on all categories. Besides, the stability and
distortion metrics are also improved as a by-product of the
increased cropping ratio.

D. Influence of Loss Weights

λ1 λ2 Cropping Distortion Stability
2 1.5 0.987 0.963 0.852
2 2.5 0.989 0.960 0.849

1.5 2 0.989 0.961 0.851
2.5 2 0.990 0.960 0.852
2 2 0.989 0.960 0.852

Table 6. Influence of loss weight.

We investigate the influence of the loss weights in the
training objective. We rewrite the training objective func-
tion in the fine alignment stage as L = LI + λ1 × LG +
λ2 × LM , where λ1 and λ2 are set to 2 by default in our
main experiments. In this experiment, we vary λ1,2 from
1.5 to 2.5 and train the model for 200 epochs respectively,
following the same training strategy and using the Adam
optimizer. We report their results on the Regular category
in the NUS dataset in Table 6. It can be seen that the per-
formance of our model is not sensitive to the loss weights
in terms of all the three metrics.

E. Analysis of the Cropping Ratio Issue in
DIFRINT

DIFRINT is an interpolation-based full-frame video sta-
bilizer that naturally avoids cropping after stabilization. Al-
though there is no cropping, the result of DIFRINT still suf-
fers from content loss, as shown in Figure 4 and Figure 8,
suggesting that DIFRINT implicitly learns a zoom-in effect
during stabilization. In other words, the cropping ratio of
DIFRINT should be less than 1 even if it is a full-frame
stabilizer by design. However, we notice that the cropping
ratio of DIFRINT reported in some literature is 1. Here,
we investigate the reasons behind this phenomenon. We
use the official inference code, the pre-trained model, and
the evaluation code provided by DIFRINT in the follow-



ing experiment. We find that there is a difference about
the definition of the cropping ratio between DIFRINT [5]
and Bundled [23]. In Bundled [23], which proposes the
cropping ratio metric, the cropping ratio is defined as the
reciprocal of the scale change between unstable and stable
frames. However, DIFRINT calculates the reciprocal of the
cropping ratio of all previous frames each time a new frame
arrives in the evaluation code, as shown in Algorithm 1. It
may cause some problems. For example, when a stabilized
frame keeps only 50% of the original content after stabi-
lization, the cropping ratio will be 1/0.5 = 2. In this way,
a frame with a large content loss will lead to a larger crop-
ping ratio than a frame with a small content loss, which is
unreasonable. Based on the above analysis, in all our ex-
periments, we follow the exact definition in Bundled [23]
as shown in Algorithm 2 for evaluation. The difference is
highlighted by red.

Algorithm 1: Cropping Ratio Calculation in
DIFRINT [5]

Input: Unstable frames: {fi|i ∈ [1, E]}
Stabilized frames: {f̂i|i ∈ [1, E]};

Output: Cropping ratio: C;
for i = 1 : E do

Hi = Homography(fi, f̂i);
Si = ScaleChange(Hi);
[ C ] = Concat(1/[ C ], Si)

end
C = min(mean([ C ]), 1)

Algorithm 2: Cropping Ratio Calculation in Bun-
dled [23]

Input: Unstable frames: {fi|i ∈ [1, E]}
Stabilized frames: {f̂i|i ∈ [1, E]};

Output: Cropping ratio: C;
for i = 1 : E do

Hi = Homography(fi, f̂i);
Si = ScaleChange(Hi);
[ C ] = Concat([ C ], 1/Si)

end
C = mean([ C ])

F. User Study
To fully evaluate the performance of the proposed OVS

method, we conduct a user study as a qualitative compari-
son. We select three videos from each category and com-
pare the results of four stabilizers on these videos. Users
are asked to rate them based on the overall visual experi-
ence. In addition, users are also required to rate them based

Figure 9. User study results of overall visual experience.

Figure 10. User study results of visual experience in terms of con-
tent preserving.

on the visual experience in terms of content preserving. 28
male and female participants between the ages of 18 and 30
participated in this study. We average the scores of each sta-
bilizer by category, and the results of the study are shown in
Figure 9 and Figure 10. Adobe Premiere denotes the Warp
Stabilizer with Synthesize Edge for stabilization in the com-
mercial software. DIFRINT [5] is an interpolation-based
stabilizer and DUT [34] is a SOTA warping-based stabilizer.
The DUT stabilizer with the use of our OVS is denoted as
OVS to avoid ambiguity. It is clear that DFIRINT outper-
forms the DUT and Adobe Premiere in terms of cropping
ratio, but is slightly weaker in terms of overall visual experi-
ence because there are some ghost artifacts in its results. In
terms of overall visual experience and crop ratio, our OVS
method is the most preferred, demonstrating its superiority
over existing methods.


