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In this supplementary material, we provide detailed anal-
ysis about the statistics of the Waymo Domain Adaptation
Dataset in Section A; the robustness analysis of the fore-
ground voxel classifier in Section B; the derivation of the
dropout rate used in the RndDrop method in Section C;
more results on the Waymo Domain Adaptation Dataset in
Section D; more results on KITTI in Section E; and more
visualization of the semantic point generation in Section F.

A. Statistics of the Waymo Domain Adaptation
Dataset

Figure 1: The average number of raw points per vehicle
across different ranges. On the x axis, the range value stands
for the distance between the center of a bounding box and
the LiDAR sensor. The y axis shows the value after ap-
plying log10 on the number of points N . “Kirk Dry” is
extracted from the Kirk Training set and contains frames
captured in the dry weather.

We collect the statistics about the average number of
points in a vehicle bounding box across different ranges.
The range value is calculated as the euclidean distance be-

tween the LiDAR sensor and the center of a bounding box.
We investigate four sets of point clouds:
• The OD Validation set, in which 99.5% of the frames are

collected in the dry weather.
• The Kirk Dry set, which consists of all the frames with

the dry weather condition from the Kirk training set.
• The Kirk Training Rainy set, which consists of all the

frames with the rainy weather condition from the Kirk
training set.

• The Kirk Validation set, in which all the frames are col-
lected in the rainy weather.
As shown in Figure 1, the point clouds with similar

weather conditions share similar numbers of points per ob-
ject, even though they are collected at different locations.
Specifically, the vehicle objects of the two “dry datasets”,
i.e., the Kirk Dry set and the OD Validation set, have simi-
lar numbers of points across all ranges. The vehicle objects
of the two “rainy datasets” i.e., the Kirk Training Rainy set
and the Kirk Validation set, share similar statistics.

In addition, the point clouds captured in the dry weather
(the OD Validation set and the Kirk Dry set) have more
points on each object than those collected in the rainy
weather (the Kirk Training Rainy set and the Kirk Vali-
dation set). Please note that we have applied log10 to the
number of points for better visualization. The difference
in the number of points is substantial between two weather
conditions across all ranges.

B. The Robustness of the Foreground Voxel
Classifier

In order to generalize detectors to different domains, it
is crucial to correctly classify foreground voxels so that se-
mantic points can be reliably generated. Table 1 lists the
evaluation results of the foreground voxel classifier. The
results in Table 1 are averaged among all voxels in the fore-
ground regions. Our SPG is trained on the OD training set.
Then it is evaluated on the OD validation set and the Kirk
validation set, respectively. The classification of a voxel is
correct if its prediction score P̃ f > 0.5 when yf = 1.0 or



Train Eval Accuracy Precision Recall AP
OD Train OD Val 99.3 % 90.9 % 92.9 % 86.7 %
OD Train Kirk Val 98.9 % 88.4 % 88.2 % 78.3 %

Table 1: Foreground voxel classification results of our SPG.
The model is trained on the OD training set and then it is
evaluated on the OD validation set and Kirk validation set,
respectively. The accuracy, precision and recall are evalu-
ated by setting P̃ f > 0.5.

P̃ f < 0.5 when yf = 0.0. The accuracy, precision and
recall are all calculated under this setting. The AP is calcu-
lated using 40 recall thresholds. The results show that SPG
achieves high performance in both domains.

C. Dropout Rate of the RndDrop Method
In the experiment section, we implement a baseline

method RndDrop, where we randomly drop out 17% of
points for point clouds from the source domain during
training. This dropout ratio is chosen to match the ra-
tio of missing points in the target domain. We calculate
(Nsrc−N tgt)/Nsrc = 17%, where Nsrc = 121.2K is the
average number of points per scene in the source domain
and N tgt = 100.4K is the average number of points per
scene in the target domain.

D. More Results on the Waymo Domain Adap-
tation Dataset

The evaluation tool [16] provides the average precision
for three distance-based breakdowns: 0 to 30 meters, 30
to 50 meters, and beyond 50 meters. The AP is calculated
using 100 recall thresholds.

We perform two groups of model comparisons in the set-
ting of UDA: Group 1. PointPillars vs. SPG + PointPillars;
Group 2. PV-RCNN vs. SPG + PV-RCNN. We train all
models on the OD training set and evaluate them on both
the OD validation set and the Kirk validation set. Table 2
and 3 show the comparisons on vehicle 3D AP and vehi-
cle BEV AP, respectively. Table 4 and Table 5 show the
comparisons in pedestrian 3D AP and pedestrian BEV AP,
respectively. In most cases, SPG improves the detection
performance across all ranges for both vehicles and pedes-
trians.

E. More Results on KITTI
We provide more 3D object detection results on KITTI.

There are two commonly used metric standards for evalu-
ating the detection performance: 1) R11, where the AP is
evaluated with 11 recall positions; 2) R40, where the AP
is evaluated with 40 recall positions. In addition to the im-
provement on car and pedestrian detection, SPG also signif-

icantly boosts the performance in cyclist detection. Based
on R11, Table 6 and Table 7 show the results in 3D AP and
BEV AP for three object types, respectively. Based on R40,
Table 8 and Table 9 show the results in 3D AP and BEV AP
for three object types, respectively.

We show more comparisons on the KITTI test set in Ta-
ble 10.

F. More Visualization of Semantic Point Gen-
eration

In Figure 3, we illustrate more augmented point clouds,
where the raw points are rendered in the grey color and the
generated semantic points are highlighted in red.



Target Domain - Kirk Source Domain - OD
Vehicle 3D AP (IoU = 0.7) Vehicle 3D AP (IoU = 0.7)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 34.65 63.13 24.56 7.65 57.27 84.39 52.97 28.22

SPG + PointPillars 41.56 68.26 31.91 13.08 62.44 86.18 58.13 35.40
Improvement +6.91 +5.13 +7.35 +5.43 +5.17 +1.79 +5.16 +7.18

LEVEL 2
PointPillars 31.67 59.26 22.09 7.08 52.96 82.30 50.74 24.6

SP + PointPillar 38.15 64.57 28.66 11.96 58.54 85.75 56.02 31.02
Improvement +6.48 +5.31 +6.57 +4.88 +5.58 +3.45 +5.28 +6.42

LEVEL 1
PV-RCNN 55.16 76.68 47.96 27.59 74.01 91.39 70.94 49.51

SPG+PV-RCNN 58.31 77.81 51.65 31.29 75.27 92.36 73.47 51.03
Improvement +3.15 +1.13 +3.69 +3.70 +1.26 +0.97 +2.53 +1.52

LEVEL 2
PV-RCNN 45.81 71.31 38.83 20.52 64.69 88.95 64.80 37.37

SPG + PV-RCNN 48.70 72.41 42.16 23.52 65.98 91.62 65.61 39.87
Improvement +2.89 +1.10 +3.33 +3.00 +1.29 +2.67 +0.81 +2.50

Table 2: The unsupervised domain adaptation vehicle detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the vehicle 3D AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.

Target Domain - Kirk Source Domain - OD
Vehicle BEV AP (IoU = 0.7) Vehicle BEV AP (IoU = 0.7)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 51.88 75.56 46.04 25.55 72.26 92.23 71.35 51.11

SPG + PointPillars 60.44 80.89 53.73 38.24 77.63 93.39 75.96 61.16
Improvement +8.56 +5.33 +7.69 +12.69 +5.37 +1.16 +4.61 +10.05

LEVEL 2
PointPillars 47.93 71.18 42.41 23.47 69.09 91.83 68.87 45.53

SPG + PointPillars 56.94 77.13 49.99 35.04 74.90 93.06 73.96 54.51
Improvement +9.01 +5.95 +7.58 +11.57 +5.81 +1.23 +5.09 +8.98

LEVEL 1
PV-RCNN 70.38 84.27 65.31 52.98 85.13 95.99 84.02 72.19

SPG + PV-RCNN 72.56 84.43 68.79 58.49 87.38 97.54 86.63 74.59
Improvement +2.18 +0.16 +3.48 +5.51 +2.25 +1.55 +2.61 +2.40

LEVEL 2
PV-RCNN 60.13 78.10 54.36 40.67 76.84 93.29 76.64 58.29

SPG + PV-RCNN 62.03 78.86 56.47 44.94 78.05 94.45 80.25 59.56
Improvement +1.90 +0.76 +2.11 +4.27 +1.21 +1.16 +3.61 +1.27

Table 3: The unsupervised domain adaptation vehicle detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the vehicle BEV AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.



Target Domain - Kirk Source Domain - OD
Pedestrian 3D AP (IoU = 0.5) Pedestrian 3D AP (IoU = 0.5)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 20.65 43.98 9.27 3.24 55.20 69.24 52.04 32.72

SPG + PointPillars 23.72 50.19 9.11 5.57 56.06 69.32 53.12 34.73
Improvement +3.07 +6.21 -0.16 +2.33 +0.86 +0.08 +1.08 +2.01

LEVEL 2
PointPillars 17.66 40.67 7.40 2.32 51.33 65.85 49.32 29.29

SPG + PointPillars 19.57 46.42 7.44 3.99 52.33 65.63 50.10 31.25
Improvement +1.91 +5.75 +0.04 +1.67 +1.00 -0.22 +0.78 +1.96

LEVEL 1
PV-RCNN 24.47 39.69 14.24 8.05 65.34 72.23 64.89 50.04

SPG + PV-RCNN 30.82 48.04 18.80 13.39 66.93 73.55 66.60 50.82
Improvement +6.35 +8.35 +4.56 +5.34 +1.59 +1.32 +1.71 +0.78

LEVEL 2
PV-RCNN 17.16 36.39 9.64 3.51 56.03 66.88 56.58 35.76

SPG + PV-RCNN 22.05 44.07 12.91 5.77 57.68 68.28 58.29 37.64
Improvement +4.89 +7.68 +3.27 +2.26 +1.65 +1.40 +1.71 +1.88

Table 4: The unsupervised domain adaptation pedestrian detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the pedestrian 3D AP results in this table. The AP distance breakdowns are provided by the official
evaluation tool.

Target Domain - Kirk Source Domain - OD
Pedestrian BEV AP (IoU = 0.5) Pedestrian BEV AP (IoU = 0.5)

Difficulty Method Overall 0-30m 30-50m 50-Inf Overall 0-30m 30-50m 50-Inf

LEVEL 1
PointPillars 22.33 45.00 10.50 3.49 63.82 76.33 61.90 42.81

SPG + PointPillars 24.83 51.44 10.80 5.71 64.66 76.11 62.69 44.98
Improvement +2.50 +6.44 +0.30 +2.22 +0.84 -0.22 +0.79 +2.17

LEVEL 2
PointPillars 18.40 41.63 8.58 2.49 60.13 73.34 58.77 38.83

SPG + PointPillars 20.67 47.56 8.98 4.11 60.93 72.94 59.54 41.11
Improvement +2.27 +5.93 +0.40 +1.62 +0.80 -0.40 +0.77 +2.28

LEVEL 1
PV-RCNN 25.39 40.23 14.72 9.76 70.35 76.22 70.49 56.77

SPG + PV-RCNN 31.92 49.06 19.87 14.87 70.37 75.86 72.29 57.47
Improvement +6.53 +8.83 +5.15 +5.11 +0.02 -0.36 +1.80 +0.70

LEVEL 2
PV-RCNN 17.88 36.89 9.97 4.23 60.81 69.22 61.86 41.32

SPG + PV-RCNN 22.65 44.57 13.48 6.38 60.88 70.62 63.65 43.27
Improvement +4.77 +7.68 +3.51 +2.15 +0.07 +1.40 +1.79 +1.95

Table 5: The unsupervised domain adaptation pedestrian detection results on both Waymo Open Dataset (OD) and Kirkland
Dataset (Kirk). We show the pedestrian BEV AP results in this table. The AP distance breakdowns are provided by the
official evaluation tool.

Car - 3D AP (R11) Pedestrian - 3D AP (R11) Cyclist - 3D AP (R11)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[8] 86.46 77.28 74.65 57.75 52.29 47.90 80.05 62.68 59.70
SPG + PointPillars 87.98 78.54 77.32 59.91 54.58 50.34 81.58 65.70 62.28

Improvement +1.52 +1.26 +2.67 +2.16 +2.29 +2.44 +1.53 +3.02 +2.58
PVRCNN[12] 89.35 83.69 78.70 64.60 57.90 53.23 85.22 70.47 65.75

SPG + PVRCNN 89.81 84.45 79.14 69.04 62.18 56.77 86.82 73.35 69.30
Improvement +0.46 +0.76 +0.44 +4.44 +4.28 +3.54 +1.60 +2.88 +3.55

Table 6: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 11 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[12, 17].



Car - BEV AP (R11) Pedestrian - BEV AP (R11) Cyclist - BEV AP (R11)
Method Easy Mod. Hard Easy Mod. hard Easy Mod. Hard

PointPillars[8] 89.65 87.17 84.37 61.63 56.27 52.60 82.27 66.25 62.64
SPG + PointPillars 90.07 88.00 86.63 65.16 59.86 56.07 86.02 71.93 65.69

Improvement +0.42 +0.83 +2.26 +3.53 +3.59 +3.47 +3.75 +5.68 +3.05
PVRCNN[12] 90.09 87.90 87.41 67.01 61.38 56.10 86.79 73.55 69.69

SPG + PVRCNN 90.41 88.49 87.74 71.19 64.37 59.88 92.54 74.43 70.99
Improvement +0.32 +0.59 +0.33 +4.18 +2.99 +3.78 +5.75 +0.88 +1.30

Table 7: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 11 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[12, 17].

Car - 3D AP (R40) Pedestrian - 3D AP (R40) Cyclist - 3d AP (R40)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[8] 87.75 78.39 75.18 57.30 51.41 46.87 81.57 62.94 58.98
SPG+PointPillars 89.77 81.36 78.85 59.65 53.55 49.24 83.27 66.11 61.99

Improvement +2.02 +2.97 +3.67 +2.35 +2.14 +2.37 +1.70 +3.17 +3.01
PVRCNN[12] 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78

SPG+PVRCNN 92.53 85.31 82.82 69.66 61.80 56.39 91.75 74.35 69.49
Improvement +0.43 +0.95 +0.34 +5.40 +5.13 +4.48 +2.87 +2.40 +2.71

Table 8: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 40 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[12, 17].

Car - BEV AP (R40) Pedestrian - BEV AP (R40) Cyclist - BEV AP (R40)
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars[8] 92.03 88.05 86.66 61.59 56.01 52.04 85.27 66.34 62.36
SPG + PointPillars 94.38 89.92 87.97 65.38 59.48 55.32 90.29 71.43 66.96

Improvement +2.35 +1.87 +1.31 +3.79 +3.47 +3.28 +5.02 +5.09 +4.60
PVRCNN[12] 93.02 90.33 88.53 67.97 60.52 55.80 91.02 74.54 69.92

SPG + PVRCNN 94.99 91.11 88.86 71.79 64.50 59.51 93.62 76.45 71.64
Improvement +1.97 +0.78 +0.33 +3.82 +3.98 +3.71 +2.60 +1.91 +1.72

Table 9: Result comparisons on the KITTI validation set. The results are evaluated by the Average Precision with 40 recall
positions. The baseline detectors, PointPillars and PV-RCNN, are directly evaluated by using the checkpoints released by
[12, 17].



Car - 3D AP
Method Reference Modality Easy Mod. Hard Avg.

F-PointNet[11] CVPR 2018 LIDAR & RGB 82.19 69.79 60.59 70.86
AVOD-FPN[7] IROS 2018 LIDAR & RGB 83.07 71.76 65.73 73.52
F-ConvNet[18] IROS 2019 LIDAR & RGB 87.36 76.39 66.69 76.81

UberATG-MMF[9] CVPR 2019 LIDAR & RGB 88.40 77.43 70.22 78.68
EPNet[6] ECCV 2020 LiDAR & RGB 89.81 79.28 74.59 81.23

CLOCs PVCas[10] IROS 2020 LiDAR & RGB 88.94 80.67 77.15 82.25
3D-CVF[25] ECCV 2020 LiDAR & RGB 89.20 80.05 73.11 80.79

SECOND[20] Sensors 2018 LiDAR 83.34 72.55 65.82 73.90
PointPillars[8] CVPR 2019 LiDAR 82.58 74.31 68.99 75.30

PointRCNN[13] CVPR 2019 LiDAR 86.96 76.50 71.39 77.77
3D IoU Loss[26] 3DV 2019 LiDAR 86.16 75.64 70.70 78.28

Fast Point R-CNNs[2] ICCV 2019 LiDAR 85.29 77.40 70.24 77.64
STD[22] ICCV 2019 LiDAR 87.95 79.71 75.09 80.91

SegVoxelNet[24] ICRA 2020 LiDAR 86.04 76.13 70.76 77.64
SARPNET[23] Neuro Computing 2019 LiDAR 85.63 76.64 71.31 77.86

HRI-VoxelFPN[24] Sensor 2020 LiDAR 85.63 76.70 69.44 77.26
HotSpotNet[1] ECCV 2020 LiDAR 87.60 78.31 73.34 79.75

PartA2[14] TPAMI 2020 LiDAR 87.81 78.49 73.51 79.94
SERCNN[27] CVPR 2020 LiDAR 87,74 78.96 74.14 51.03

Point-GNN[15] CVPR 2020 LiDAR 88.33 79.47 72.29 80.03
3DSSD[21] CVPR 2020 LiDAR 88.36 79.57 74.55 80.83
SA-SSD[5] CVPR 2020 LiDAR 88.75 79.79 74.16 80.90

CIA-SSD[19] AAAI 2021 LiDAR 89.59 80.28 72.87 80.91
Asso-3Ddet[4] CVPR 2020 LiDAR 85.99 77.40 70.53 77.97

Voxel R-CNN[3] AAAI 2021 LiDAR 90.90 81.62 77.06 83.19
PV-RCNN[12] CVPR 2020 LiDAR 90.25 81.43 76.82 82.83

SPG+PV-RCNN (Ours) - LiDAR 90.49 82.13 78.88 83.83

Table 10: Car detection result comparisons on the KITTI test set. The results are evaluated by the Average Precision with 40
recall positions on the KITTI benchmark website. We compare with the leader board front runner detectors that are associated
with conferences or journals released before our submission. The Avg. AP is calculated by averaging over the APs of Easy,
Mod. and Hard. difficulty levels.



Figure 3: More visualization of generated semantic points. The grey points are original raw points. The red points are the
generated semantic points. The green boxes are the predicted bounding boxes.
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