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1. Overview
We provide additional experiments and analyses of our proposed method. In particular:

• We provide the results of our method on the CIFAR-FS [6] and mini-ImageNet [17] datasets and compare it with the
state-of-the-art methods in Section 2.

• We provide results of additional experiments that demonstrate the effectiveness of our method in dealing with the
problem of an imbalanced training set with long-tail training classes in Section 3.

• We analyze of the sensitivity of our method to the number of training instances in Section 4.

• We provide a visualization of augmented samples on the MNIST dataset generated by our method using the posterior
distribution in comparison with using Gaussian Noise in Section 5

• In Section 6, we provide additional experiments on the nearest “real sample” neighbors to show that augmented features
from our methods lie close to the real ones.

2. Performance on the non-fine-grained few-shot datasets
Our method works particularly well on fine-grained datasets including the CUB[18], NAB[16], and Stanford Dogs[4]

datasets where the intra-class variations are similar across classes. Here we provide additional results on the non-fine-grained
few-shot datasets such as CIFAR-FS [6], and mini-Imagenet[17], summarized in Tables 1 and 2 respectively. On both
datasets, our method outperforms other methods in 5-shot setting by a small margin and achieves competitive performance
in 1-shot setting. For the aforementioned datasets, intra-class variations between classes are very different in nature, for e.g.,
the variation of the “wok” class would bear no resemblance to variations in the “jellyfish” class or the unicycle “unicycle”
class of the mini-Imagenet dataset as they are very different objects. Therefore, constructing a common embedding space to
model the intra-class variability, which is crucial to our method, is challenging. However, our method still gets competitive
results. This implies that our method can be used even when we cannot be sure about the type of variability in the dataset,
without a performance penalty

3. Performance on long-tailed training data
In the paper we have shown that the intra-class variance can be transferred from the base classes to to augment examples

from novel classes. In this experiment, we investigate whether or not the intra-class variance can also be transferred across
different training classes to deal with long-tailed training data, where the number of training instances of different classes is
highly imbalanced.
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Method Backbone 1-shot 5-shot
MAML [3] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0
ProtoNet [13] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6
RelationNet [15] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8
R2D2 [1] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1
Shot-Free [10] ResNet12 69.2 ± n/a 84.7 ± n/a
TEWAM [9] ResNet12 70.4 ± n/a 81.3 ± n/a
ProtoNet[13] ResNet12 72.2 ± 0.7 83.5 ± 0.5
MetaOptNet [6] ResNet12 72.6 ± 0.7 84.3 ± 0.5
Ours ResNet12 72.3 ± 0.8 84.9 ± 0.6

Table 1. Few-shot classification accuracy on the CIFAR-FS dataset. a-b-c-d denotes a 4-layer convolutional network with a, b, c, and d
filters in each layer. The best performance is indicated in bold.

Method Backbone 1-shot 5-shot
MatchingNet [17] Conv4 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [13] Conv4 48.70 ± 1.84 63.11 ± 0.92
LEO [11] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12
SNAIL [7] ResNet12 55.71 ± 0.99 68.88 ± 0.92
TADAM [8] ResNet12 58.50 ± 0.30 76.70 ± 0.30
MTL [14] ResNet12 61.20 ± 1.80 75.50 ± 0.80
Variational FSL [19] ResNet12 61.23 ± 0.26 77.69 ± 0.17
MetaOptNet [6] ResNet12 60.33 ± 0.61 76.61 ± 0.46
Ours ResNet12 61.40 ± 1.15 81.10 ± 0.83

Table 2. Few-shot classification accuracy on the mini-Imagenet dataset. The best performance is indicated in bold.

Figure 1. Few-shot classification accuracy on the CUB[18] and NAB [16] datasets as the number of tail classes increases. Compared to
the baseline [2], our method is more resilient to long-tailed data due to the transfer of intra-class variance during the training stage.

We manually create some classes with insufficient training samples (10 samples each class) on the CUB[18] and NAB[16]
datasets, and compare the performance of our method with the baseline [2] as the number of tail classes varies. As shown in
Figure 1, the performance of both methods degrades as the number of tail classes increases. However, we observe that our
method is more resilient to the number of classes with insufficient training data compared to the baseline[2]. We attribute
such resilience to the augmented features generated in the training stage, which transfer the intra-class variance between
training classes. Such an augmentation alleviates the issue of imbalanced training data and leads to more discriminative
feature representations.



Figure 2. Few-shot classification accuracy on the CUB[18] and Stanford Dogs [4] datasets as the number of support samples per class
increases. Compared to the baseline [2], our method is less sensitive to the number of shots.

4. Sensitivity to the number of support examples per class
Figure 2 shows how the classification accuracy varies as a function of the number of support examples per class (shots) on

the CUB [18] and Stanford Dogs [4] datasets. We compare our method with the baseline method [2] with a Conv4 backbone.
As expected, the number of support samples per class is highly correlated with the classification accuracy: more labeled
samples per class would lead to better performance. However, we observe that our proposed method consistently outperforms
the baseline method [2] and is less sensitive to the number of shots. Since our augmented samples can effectively enlarge the
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Figure 3. Visualization Results on the MNIST [5] dataset. The left-most images are the original images. (a) Images reconstructed from a
traditional variational autoencoder model are basically identical to each other. (b) Adding Gaussian noise to the latent space of a traditional
variational autoencoder produces meaningless outputs . (c) Sampling repeatedly from the disentangled intra-class variance of our model
produces images which exhibit noticeable variations while preserving the attributes of the corresponding digit class.

intra-class variance, even with few labeled examples given, it will compensate the lack of training data and the performance
will thus be less sensitive to the number of support samples per class.

5. Visualization Results on MNIST
We provide the visualization of the augmented features of our method on the MNIST dataset. As discussed in Section 4

of the paper, the representation of an input image is decomposed into two parts, the class-specific feature and the intra-class
variance. We use four Convolutional layers to obtain a feature map of size 32×4×4. An average pooling layer is applied



to the feature map to generate the class-specific feature and two fully connected layers are used to generate the intra-class
variance. The decoder architecture is the transpose of the encoder. Unlike in the paper, the entire input image is reconstructed
instead of the feature map.

Figure 3a shows the images reconstructed from a traditional variational autoencoder model (VAE), which are almost
identical and have very little variation. Figure 3b shows the images reconstructed from a traditional VAE by adding Gaussian
noise to the latent space. As can be seen from the figure, simply adding gaussian noise causes the decoder to generate images
that do not lie on the MNIST image manifold. Figure 3c shows the images reconstructed from our model by sampling
repeatedly from the learned intra-class variance distribution. As can be seen in Figure 3c, images reconstructed using our
method show noticeable variation while preserving the attributes of the corresponding digit class. Consequently, such an
augmentation can help augment training instances of the novel classes when training a classifier on them.

6. Analysis on nearest “real sample” neighbors.
We analyze the fidelity of augmented features to their classes via searching for their K-nearest “real-sample” neighbors

(K=1,3, or 5). We train our method and delta-encoder[12] using the base classes and use the trained models to augment
features of the novel classes. We then search for the nearest-neighbors of the augmented features in all the real samples
in the novel classes of the CUB dataset [18]. Some nearest-neighbors in the image space are visualized in Figure 1 in the
main paper. The quantitative results are summarized in Table 3. As can be seen, only 8.7% of the augmented samples from
delta-encoder have their nearest neighbors from the same classes as the original features. Even in the case when considering
3 and 5 nearest neighbors, only 27.9% and 32.8% of them belong to the same class as the original features. This suggest that
the augmented features from delta-encoder do not tend to preserve the class-specific features of the original one.

Augmented features from our methods have significantly higher class fidelity: 35.4% of the features having their top
nearest neighbors belong to the same classes as the original features. In the cases of 3-NN and 5-NN, 54.8% and 64.5% of
the nearest neighbors have the same class as the original features, respectively. Note that the KNN algorithm is sensitive to
“hard examples” that lie close to the class boundaries, as can be seen in the first row of Table 3.

1-NN 3-NN 5-NN
Real Samples 43.2 63.9 71.7
∆-Encoder [12] 8.7 27.9 32.8
Ours 35.4 54.8 64.5

Table 3. Analysis of the nearest “real sample” neighbors. The table shows the percentages of the nearest “real sample” neighbors of the
augmented features that belong to the same class as the original features. We train methods on the base classes and test on the novel classes
of the CUB [18] dataset.
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