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1. Theoretical Analysis

1.1. Proof of Lemma 1

Proof. To simplify the proof, we assume that each target
class contains z examples as zF = n. Then, we define
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) measures the dis-

tance from an individual example to other examples from
the same target class. It cannot be bounded well by only
solving the problem of instance classification.

1.2. Proof of Theorem 1

First, by optimizing the proposed classification problem,
we assume
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By assuming the residual is lower bounded by constants a
and b as
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To guarantee the performance on the target classification
problem, we have to bound exp(f(xi)
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as illustrated in Eqn. 1. Now, it can be bounded with the
help from solving the coarse-class classification problem.
Specifically, the instance similarity can be bounded as
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Then, we can bound each term as follows. First, the dis-
tance between an example to its individual label represen-
tation (i.e., w) can be bounded by solving the individual



classification problem as
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f(xi)
⊤(f(xi)

⊤ −wI
yi
) ≥ −c

√
2c2 − 2 log(aα/(1− α))

Note that examples from the same target class also share
the same coarse-class label. Therefore, the distances be-
tween examples from the same target class can be bounded
as
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Combining them together, we have
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Taking it back to Eqn. 1, we can observe the desired result
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1.3. Proof of Theorem 2

Proof. Following the analysis in Theorem 1, we assume
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Compared with the analysis for Theorem 1, if we can
bound Pr{yIi |xi,W

I}, the performance on the target clas-
sification task can be guaranteed. First, we try to bound
the similarity between the example and the individual class.
Considering ∀j, j ̸= yCi , we have
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Therefore, the similarity can be further bounded as
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Note that the distance between an example and its corre-
sponding parameters wi can be bounded as in Theorem 1.
Therefore, we have
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where M denotes the quantity of examples from different
coarse classes as M = |{xj : y

C
j ̸= yCi }|. Letting

α′ =
1
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where c′′ = c′M , we can obtain the guarantee by the similar
analysis as in Theorem 1.

2. Experiments
2.1. Synthetic Data

Besides comparing the performance on real-world data
sets, we conduct an experiment on the synthetic data to il-
lustrate the difference between patterns learned using dif-
ferent training labels on the same data set. The synthetic
data is generated as follows. First, we randomly generate
32 big color patches and 128 small color patches as a pool
of patches. Given a blank image, a big patch and a small
patch are randomly sampled from the pool, and then added
to the image. Finally, 512 images are obtained. Fig. 1 illus-
trates the process.

Sample

32 big patches

128 small patches

Figure 1. Data generation procedure for synthetic data.

For the synthetic data, coarse classes are defined with
big patches and target classes are defined by small patches.
Consequently, there are 32 coarse classes and 128 target
classes in the data set. To investigate the different pat-
terns learned by the neural network, we train the model with
the objective of “Ins”, “Cos” and “Opt”, respectively. Af-
ter that, we visualize the spatial attention maps of different
models to illustrate the patterns exploited by these models.
The detailed algorithm for computing attention maps can be
found in [1].

Fig. 2 shows the attention maps of these three tasks.
First, we can observe that deep learning can capture the
most discriminative parts for a given task. For example,
it can identify the big patches for the 32-class classifica-
tion task and the small patches for the 128-class classifi-
cation task. Second, the learned patterns for them are to-
tally different. When training the model with the objec-
tive of “Cos”, the neural network will ignore small patches,
which are essential for the 128-class classification problem.
It demonstrates that the patterns learned from the conven-
tional pipeline with coarse labels only can be inappropriate
for the target task. Finally, optimizing the loss for iden-
tifying each example as “Ins” can explore all patterns in

Images 32-class 128-class Individual

Figure 2. Illustration of different patterns learned from different
tasks on the same synthetic data consisting of 512 images. Accord-
ing to different combinations of patches, three tasks are included:
32 coarse-class classification (i.e., 32-class with big patches),
128-class classification (i.e., 128-class with small patches) and
instance-level classification (i.e., Individual with big and small
patches).

images which may introduce additional noise for the target
task (i.e., 128-class).

2.2. Stanford Online Products

Results for coarse-class classification and retrieval are
summarized in Table 1. It is evident that even when the
target task is consistent with the training labels, exploring
fine-grained patterns can achieve additional gain.

Top1 Top5 R@1 R@2 R@4 R@8
Cos 80.1 97.3 76.6 84.3 89.5 93.2

CoInsimp 80.6 97.5 77.1 84.5 89.7 93.4

Table 1. Comparison of accuracy and recall (%) for 12 coarse
classes on SOP.

2.3. Ablation Study for Instance Proxy Loss

In this subsection, we conduct experiments to evaluate
the effect of instance proxy loss in “CoInsP∗∗”. CIFAR-
100 is adopted for the ablation study. The weight for the
corresponding loss function is set as λP = 1.

Effect of M First, we investigate the effect of the number
of epochs before the instance proxy loss is added for opti-
mization. Since the learning rate will be first decayed at the
60-th epoch, we add the loss at {60, 80, 100, 120} epochs
and summarize the results in Table 2. The performance of
“CoIns∗∗” is included as a baseline. Apparently, including
the instance proxy loss can improve the performance after
sufficient training. It is consistent with our analysis that
the parameters from instance classification can be applied to
generate appropriate proxies for the target task when those



parameters can identify individual examples well. However,
if we have the loss after another decay of learning rate at the
120-th epoch, the improvement vanishes. This phenomenon
is due to the fact that the learning rate is too small to exploit
the additional informative patterns effectively..

M R@1 R@2 R@4 R@8
Baseline 60.5 71.1 79.8 86.5
60 61.4 71.5 79.7 86.3
80 61.7 71.7 80.0 86.5
100 62.0 71.7 80.2 86.6
120 60.8 70.6 79.6 86.5

Table 2. Ablation study on M before the instance proxy loss is
added.

Effect of P Table 3 compares the performance by vary-
ing P . When P = 25, 000, the number of clusters is half
of that of total examples. There is no sufficient information
within each cluster for CIFAR-100, since each cluster con-
tains only about 2 instances. In contrast, a small P will lead
to more aggregated clusters and can contain patterns that are
related to the target task. If P is too small (i.e., the cluster
size is too large), additional noise can be introduced and re-
sult in the suboptimal results as illustrated when P = 500.
It confirms our analysis that a large P is important for the
tight approximation.

P R@1 R@2 R@4 R@8
25,000 60.5 70.8 79.6 86.6
10,000 62.0 71.7 80.2 86.6
5,000 61.2 71.2 78.8 85.4
1,000 58.9 69.0 76.5 82.3
500 57.9 67.9 76.0 82.1

Table 3. Ablation study on the number of clusters when using the
instance proxy loss.

References
[1] Sergey Zagoruyko and Nikos Komodakis. Paying more atten-

tion to attention: Improving the performance of convolutional
neural networks via attention transfer. In ICLR, 2017. 3


