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This supplementary material presents: (1) dataset and
implementation details; (2) more qualitative experimental
results; (3) ablation studies; (4) proofs in Section 3.

1. Dataset and Implementation Details
1.1. Emotion Recognition

The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) contains videos and audios
of 24 professional actors (12 female, 12 male), vocalizing
two lexically-matched statements. It contains 1440 emo-
tional utterances with 8 different emotion classes: neutral,
calm, happy, sad, angry, fearful, disgust and surprise. The
dataset is randomly split as 2:8 for Dl and Du and 8:1:1
as train / validation / test for Du. To construct the la-
beled uni-modal datasetDl, we select images every 0.5 sec-
ond of a video clip as modality α and train a facial emo-
tion recognition (FER) network as the UM teacher, which
classifies emotions based on images. Image-audio pairs
from video clips consist of the unlabeled multimodal dataset
Du. We sample images as inputs from modality α in the
same way, adopt ”Kaiser best” sampling for audios and
take Mel-frequency cepstral coefficients (MFCCs) as inputs
from modality β.

1.2. Semantic Segmentation

NYU Depth V2 contains 1449 RGB-D images with 40-
class labels, where 795 RGB images are adopted for train-
ing the UM teacher and the rest 654 RGB-D images are for
testing. Besides labeled data, NYU Depth V2 also provides
unannotated video sequences. We randomly sample 1488
RGB-D images as Du for training the student. Soft labels
of the UM teacher are adopted.

In addition, we propose a confidence-weighted loss term
in this task to further regularize the student, preventing it
from overfiting to the teacher. For each sample pixel x and
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its soft pseudo label ỹ, we assign x with a weight ω(x)
defined by:

ω(x) = 1−
∑K
k=1 ỹi log ỹi

logK
(1)

K denotes the number of classes. We then modify Lpl in
Equation (4) of the main paper by applying a weight for
each sample:

Lpl =
1

M

M∑
i=1

ω(x) lcls(ỹi, fs(x
α
i ,x

β
i ; θs)) (2)

Figure 2 demonstrates one image and its confidence map
(i.e., ω(x)) based on pseudo labels of the UM teacher. Low
confidence pixels are given a small weight while high con-
fidence ones contribute largely in calculating the loss. This
technique helps further reduce noise brought by inaccurate
pseudo labels.

Figure 2: Left figure: one RGB image; right figure: corre-
sponding weight value ω of each pixel.

1.3. Event Classification

The AudioSet and VGGSound are both audio-visual
datasets for event classification. We take a mini common
set of them including 3710 data in AudioSet and 3748
data for training and 1937 data for testing in VGGSound
with 46 event categories. VGGSound guarantees the audio-
video correspondence as the sound source is visually ev-
ident within the video, while AudioSet does not. There-
fore, we consider AudioSet as a unimodal dataset and VGG



(a) UM teacher (b) NOISY student (c) MM student

Figure 1: normalized confusion matrix test accuracy

Sound as multimodal. Audios from AudioSet and audio-
video pairs from VGGSound are taken as the labeled uni-
modal dataset Dl and unlabeled multimodal data Du re-
spectively. Similarly, a student network is given soft pseudo
labels of the UM teacher for training.

2. Experimental Results
2.1. Emotion Recognition

One interesting finding is presented in Figure 1. We
compare the confusion matrix that the UM teacher, NOISY
student and our MM student generates on test data. Com-
pared with NOISY student, the MM student contributes
quite differently for 8 classes: it significantly improves the
class “surprised” and slightly improves over the “neutral”
class. We hypothesize that audios belonging to class “sur-
prised” have more distinct features than “neutral”, and a
multi-modal student effectively utilizes this information.

2.2. Semantic Segmentation

Figure 3 presents more segmentation results on NYU
Depth V2 test data. We can see that the UM Teacher gen-
erates inconsistent and noisy predictions, for instance, they
fail to identify sofas in the third, fourth and sixth example.
NOISY Student improves a little over the teacher’s predic-
tion. However, its prediction is still messy. In contrast, MM
student identifies the sofa as a whole and gives mostly cor-
rect predictions. Depth modality here enables knowledge
expansion from the RGB teacher.

2.3. Event Classification

We list top 5 event categories that our MM student im-
proves most in Table 1. While NOISY student leads to
similar performance gain for each event class, our MM stu-
dent greatly improves over these classes with the assistance
of video modality. For instance, the UM teacher performs
poorly on the “dog growling” class with audio inputs only.
NOISY student improves test mAP from 0.069 to 0.096
with the help of more data. In contrast, a MM student

Test mAP
UM

teacher
NOISY
student

MM
student (ours)

basketball bounce 0.178 0.263 0.542
dog growling 0.069 0.096 0.516

people belly laughing 0.334 0.475 0.800
sliding door 0.104 0.163 0.388

lawn mowing 0.318 0.481 0.541

Table 1: Performance of top 5 event categories that MM
student improves. Test mAP of the UM teacher and NOISY
student are shown for comparison.

achieves an mAP of 0.542 and shows great improvement
over the unimodal baselines. Video modality helps our MM
student denoise these incorrect predictions given by the UM
teacher.

3. Ablation Studies

In this section, we provide a comprehensive study of var-
ious factors in MKE.

3.1. Regularization

The ablation study for regularization terms is provided
in the main paper. We report performance of MM student
(no reg), i.e., a MM student without regularization in all
experiments. Results consistently show that a MM student
yields better results than a MM student (no reg). We arrive
at the conclusion that multimodality combined with regu-
larization leads to best performance compared with all the
baselines.

3.2. Unlabeled Data Size

We study the effect of unlabeled data size in this section.
Specifically, for the task of semantic segmentation, we re-
duce unlabeled data size from 1488 RGB-D image pairs as
reported in the main paper to 744 image pairs. Results are
shown in Table 2.
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Figure 3: Qualitative segmentation results on NYU Depth V2 test set.

Method Train data Test mIoU
(%)mod Dl D̃u

UM teacher rgb X 44.15
UM student rgb X 44.57

NOISY student rgb X X 46.85
MM student (ours) rgb, d X 47.44

Table 2: Results of semantic segmentation on NYU Depth
V2. We set unlabeled data size smaller than labeled data
size.

UM student yields marginal improvement over UM
teacher as it receives a small amount of unlabeled data and
pseudo labels for training. On the contrary, provided with
same data as the UM student, a MM student still achieves
a mIoU gain of 3.29%. Furthermore, although training data
of NOISY student is twice greater than that of a MM stu-
dent, half of which contain true labels, our MM student still
achieves better results with respect to NOISY student. The
great denoising capability of MKE is thus shown.

3.3. Teacher Model

The UM teacher of previous experiments on NYU Depth
V2 is implemented as DeepLab V3+. In this section, we
experiment with the teacher model as RefineNet. We utilize
same data as in Section 4.2, where |Dl| = 795, |Du| = 744,
and |Dtest| = 654. Table 3 reports performance when the
UM teacher is RefineNet with ResNet-50 and ResNet-101
as backbone respectively.

Method mod
Test mIoU(%)

RefineNet-
Res50

RefineNet-
Res101

UM teacher rgb 42.41 44.18
UM student rgb 41.23 42.89

NOISY student rgb 43.21 45.69
MM student rgb, d 45.71 46.95

Table 3: Ablation study for UM teacher model architec-
ture. MM student consistently denoises pseudo labels when
teacher model varies.



Despite different model architectures of the UM teacher,
the conclusion holds same: MM student significantly out-
performs the UM teacher and UM student, achieving
knowledge expansion. In addition, a stronger teacher (i.e.,
more reliable pseudo labels) will lead to a better student
model in the case of both unimodality and multimodality.
Another observation here is that UM student fails to sur-
pass UM teacher due to limited size of Du. On the con-
trary, given small amount of unlabeled data, our MM stu-
dent effectively utilizes unlabeled multimodal data and out-
performs NOISY student which has access to both labeled
and unlabeled data.

3.4. Pseudo Labels for Distilling

We also investigate how soft and hard pseudo labels in-
fluence results and report results in Table 4. We follow same
data and model settings in the previous section.

As shown in Table 4, soft labels yield slightly better re-
sults than hard labels. The MM student learning from soft
labels of the UM teacher achieves highest test mIoU.

Method mod
Labels for
distilling Test mIoU(%)

UM teacher rgb ? 44.18
UM student rgb hard 42.53
UM student rgb soft 42.89
MM student rgb, d hard 46.64
MM student rgb, d soft 46.95

Table 4: Ablation study for hard vs. soft labels on seman-
tic segmentation. ? means that the UM teacher is trained
on true labels. Other methods are trained on pseudo labels
generated by the UM teacher.

4. Proofs
4.1. Equivalence of Loss Terms

We prove below that Equation (3) is equivalent to Equa-
tion (3) in the main paper.

θ?s = argmin
θs

1

M

M∑
i=1

lcls(ỹi, T (fs(x
α
i ,x

β
i ; θs)) (3)

lcls refers to cross entropy loss for hard labels and KL
divergence loss for soft labels. It takes the form of:

lcls(y, p) = −
K∑
k=1

yk log
exp pk∑K
j=1 exp pj

+

K∑
k=1

yk log yk

(4)
where y and p are K-dimensional vectors. K denotes the
number of classes. For simplicity, let z denote the output
of feeding p into a softmax layer, i.e., ∀k ∈ [K], zk =

exp pk∑K
j=1 exp pj

.

The derivative of lcls(y, p) with respect to pj is:

∂lcls(y, p)

∂pj
= −

K∑
k=1

yk
∂log zk
∂pj

= −
K∑
k=1

yk(Ikj − zj) = zj − yj

(5)

Therefore, Olcls = [z1 − y1, z2 − y2, ..., zk − yk].

||Olcls|| =

√√√√ K∑
j=1

(yj − zj)2 ≤
√
K (6)

Equation (6) states that lcls(y, p) is Lipschitz continuous
in p for fixed y with respect to || · ||, where

√
K is the Lip-

schitz constant. Therefore, ∃ −
√
K ≤ γ ≤

√
K, such that

loss terms in Equation (3) equal to that of Equation (3) in
the main paper.

4.2. Lemma 1

To start with, by definition of (a, c) expansion and
max(c1, c2) ≤ 1

ā , we derive Equation (7) and (8) from
Equation (10) and (11) in the main paper.

Pi(N(V α)) ≥ c1Pi(V α)

∀ V α ⊆ Xα with Pi(V α) ≤ ā
(7)

Pi(N(V β)) ≥ c2Pi(V β)

∀ V β ⊆ X β with Pi(V β) ≤ ā
(8)

Multiplying both sides of Equation (7) and Equation (8),
we have:

Pi(N(V α))Pi(N(V β)) ≥ c1c2Pi(V α)Pi(V
β)

∀ V α ⊆ Xα with Pi(V α) ≤ ā
∀ V β ⊆ X β with Pi(V β) ≤ ā

(9)

Plugging in conditional independence (i.e., Equation
(12) in the main paper) gives us:

Pi(N(V )) ≥ c1c2Pi(V ),

∀ V ⊆ X with Pi(V ) ≤ ā
(10)

Thus, P on X satisfies (ā, c1c2) expansion.


