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1. Introduction

We refer readers to the video material for better visualiz-
ing the dynamical changes of the network, the correspond-
ing SDF approximation, and the extracted mesh models.
Here, we provide additional experimental results to com-
plement the experiment section of our main paper. We also
outline revenues for interesting future work (highlighted in
bold font) through the supplementary experiments.

2. Baseline Settings

Figure 1: Training data size for different baselines when
the #870 frame arrives. Note that we downsample the data
every ten frames. Hence, there are 86 frames that have been
seen before the #870 frame.

A more illustrative explanation of the proposed baseline
setting is presented in this section. As presented in Fig. 1,
the data size for batch re-training is 87 times as large as that
of ours, thus leading to much more iterations within each
epoch (and more training time accordingly). As is presented
in Sec. 5.2 of the main paper, we achieve nice trade-offs be-
tween accuracy and efficiency with much less training time
and data storage over the batch re-training baseline (compa-
rable accuracy) and much better accuracy compared to other
alternatives (same training time).

(a) Batch training (mean: 2.06mm, std.: 3.38mm)

(b) Fine-tuning (mean: 496.34mm, std.: 626.92mm)

(c) Ours (mean: 2.58mm, std.: 4.22mm)

Figure 2: The heatmap indexed by (m,n) presents the mean
(left) and standard deviation (right) of the approximated
SDF accuracy f(xm; θn). Notice that the range of fine-
tuning baseline differs from others for better visualization.
The mean and std. are calculated with values in the lower
triangle to measure the accuracy of memory.

It can also be understood from Fig. 1 that the training
time of batch re-training will be linearly growing with the
increasing number of frames. Ours, on the other hand,
maintain a constant training time and memory consumption
without forgetting.



Figure 3: Recovered scene geometry from the implicit mapping function at frame 100-500. Top row: without the replayed
buffer to regularize previously visited areas, the network tends to forget the geometry gradually; Bottom row: a simple
solution of maintaining a fixed size of buffer can effectively preserve pre-visited scene geometry with high-frequency details.

3. Memory and Predictor
We here provide a more thorough analysis of Fig. 6 of

our main paper. As illustrated in Fig. 2, the heat map in-
dexed by (m,n) presents the mean and the standard devi-
ation in meter of the SDF f(xm

i ; θn) approximated using
the network θn for the observation xm (batch training base-
line is trained with the entire sequence of data). The upper
triangle denotes the prediction performance for unseen ar-
eas as m > n (not applicable for batch training baseline),
while the lower triangle denotes the memory performance
for previously seen areas as m < n. We can see that the
proposed method achieves comparable results of memory
against the batch re-training baseline, while the fine-tuning
baseline suffers from catastrophic forgetting.

The heatmap also demonstrates the forward transfer (→)
and backward transfer (↓) performance [1] of each method.
It is clear that at this stage, a simple MLP does not perform
well for predicting unseen areas. The incorporation of ge-
ometry prior for better prediction may be an interesting
follow-up suggestion.

4. Analysis of the Replayer Buffer
We provide additional 3D visualization of the scene ge-

ometry changes over time as a complement to Fig. 7 of our
main paper, depicting the role of the replayed buffer. As
illustrated in Fig. 3. the replayed buffer of zero level-set
samples properly regularizes the previously visited surface
information and alleviates the catastrophic forgetting issue.
Further experiments can be conducted to analyze the re-
lationship between the convergence rate and the sample
selection strategy. It would be the key to achieving real-
time performance based on the continual neural mapping
paradigm.

5. Experiments on the TUM Dataset

We provide additional qualitative results on the real-
world TUM dataset [3] from different viewpoints. We re-
fer readers to the supplementary video for better visualizing
the recovered model. As illustrated in Fig. 4 and 5, we can
see that the proposed continual neural mapping setting can
mitigate the side effect of noisy observations. However, it is
also noteworthy that high-frequency signal recovery and de-
noising are controversial. How to use a single network to
recover fine-grained geometry details with sensor noise
reduced continually is one interesting extended case for
continual neural mapping.

6. Error Map of Extracted Mesh Model

As illustrated in Fig. 6, we here present the visualization
of the extracted mesh accuracy1 of [4, 2]. The parameter
settings for the two methods are specified as follows: for
RoutedFusion [4]2, we use a voxel size of 2cm with 5123

voxels to best fit the entire scene within the volumetric field
using a NVIDIA GeForce RTX 2080Ti; for LIG [2]3, we set
a part size of 0.25 as suggested by the paper. Though the
proposed implicit representation does not rely on the dis-
cretized volume, we can maintain active volume indices to
extract clean mesh triangles with state-of-the-art accuracy.
The incorporation of priors to eliminate spurious zero
level-set due to incomplete observations is worth study-
ing (similar to Sec. 3).

1CloudCompare: http://www.danielgm.net/cc/
2RoutedFusion. https://github.com/weders/RoutedFusion
3LIG. https://github.com/tensorflow/graphics

http://www.danielgm.net/cc/


Figure 4: Extracted mesh (right) with the network that continually learned till the last frame. The mesh is visualized with the
vertex normal to present the smooth surface even if the network is learned from noisy sequential data (left).

Figure 5: Self-improved SDF approximation on TUM long office dataset. Each row is recorded at a specific view point. Each
column denotes the mesh extracted from the network trained with the frame t (t = 30, 480, 930, 1380, 1830 respectively).
We refer readers to the supplementary video for better visualization.

(a) RoutedFusion (b) LIG (c) Ours (d) Ours (masked)

Figure 6: The visualization of mesh accuracy for each method (scaled up to 5cm, red: low accuracy, blue: high accuracy). We
here provide the back face visualization to see the internal error distribution. RoutedFusion generates thick faces. Therefore,
the internal view of the room cannot be seen. It is clear that our continuous SDF approximation leads to low accuracy
in previously unseen areas, while the geometry recovered in already seen areas (masked) outperforms the state-of-the-art
methods.
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