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– Supplementary Material

A. Additional Analysis of the Spectral Embed-
ding Module

This section provides a proof on the following result of
the main paper, which states that when nk = n
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To obtain this result, we first look at E. It is clear that
if the prediction associated with a point is incorrect, then it
would affect O(
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n) edges. Therefore,
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Likewise, if the shape prediction associated with a point
is correct, it will introduce edges for each point within the
same primitive. Suppose the size of each primitive is nk and
the number of correct predictions (1− ρ)nk. We proceed to
characterize the spectrum of Ag

c,k.
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Proof: Proof of Section A.1.
Suppose nk = n

K . We can derive (1) by substituting
(2) and (3) into the following variant of the Davis-Kahan
theorem which is copied from the main paper:
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(1) implies when the fractions of wrong shape predictions
are small, the spectral gap λK(Ag

c,k)− λK+1(A
g
c,k) is large,

which implies the advantage of using U g
c over the predicted

shape parameters for clustering.

A.1. Proof of Prop. 1
Without losing generality, we assume the correct predic-

tions occupy the first ρnk elements. It it easy see to check
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Therefore, the rank of Ag
c,k is 2. It is easy to check that the

two non-zero eigenvalues of Ag
c,k are
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and the corresponding eigenvectors are
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which ends the proof.

B. Geometric Consistency Matrix Details
Here, we describe our approach for computing the

distance metric d(pi, sj) efficiently.
Firstly, Dense Descriptor Module predicts three dense

point-wise attributes, including a semantic feature descrip-
tor d ∈ RN×128, a binary type indicator vector t ∈
{0, 1}N×6, and a shape parameter vector s ∈ RN×22,
where N is the number of points. Then we process
each primitive type t respectively. If primitive type
t ∈ {Plane,Sphere,Cone,Cylinder}, we extract the points
belonging to this type according to the binary type indicator.
Let M be the number of points from this primitive type.
Take Plane as an example, we can get the corresponding
shape parameter vector s ∈ RM×4. If primitive type
t ∈ {B-spline-Open,B-spline-Closed}, we first extract the
points and take them as input to the SplineNet [2] to get
the control points of B-spline patch. Then we can compute
a sub-distance matrix d′ ∈ RN×M , where d′ij = d(pi, sj).
Therefore, for each shape, we only need 6 iterations for each
primitive type which is feasible in practice.

When computing the distance between a point and a
Bspline patch, we first randomly sample each Bspline patch
(1024 points), the samples are reused for all the other points.
For nearest neighbor query, we used a grid data structure.
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Figure 1: Network architecture of Dense Descriptor Module. (a). With only point position as input. (b). With point position
and normal as input.

C. Architecture Details of Dense Descriptor
Module

Dense Descriptor Module takes a point cloud P =
{pi|1 ≤ i ≤ n} as input. Each point pi has a position
pi ∈ R3 and an optional normal ni ∈ R3. As illustrated
in Figure 1(a), with only point position as input, The dense
descriptor module uses Point Transformer [4] as backbone,
and outputs four dense point-wise attributes. The attributes
associated with each point pi ∈ P includes a semantic
feature descriptor di ∈ R128, a binary type indicator vector
ti ∈ {0, 1}6, a shape parameter vector si ∈ R22, and the
point normal ni ∈ R3.

As illustrated in Figure 1(b), when adding normal as
input, the dense descriptor module replaces point transformer
with DGCNN [3]. In our experiments, we found that it has
a strong ability to capture feature information of surface
normal. Note that this module outputs three dense point-
wise attributes.

D. Training Details
Dataset. The ANSI Mechanical Component Dataset [1] is
provided by TraceParts. Four basic primitive types (plane,
sphere, cylinder, cone) cover 94% percentage area per-model
on average in ANSI. The maximum number of primitives per
shape does not exceed 20 in all the models. In experiments,
we first uniformly sample 8192 points over the entire surface
of each shape as the input point cloud . Then we normalize
each shape so that its mean is at the origin, and the diameter
of the shape is 1. During training, we perturb the input model
by randomly moving each point along along the surface
normal direction with a random value in [−0.01, 0.01].

The ABCParts dataset is derived from the ABC
dataset [2]. Each model consists of at least one B-spline
patch. In the experiments, we first sample each shape with
10K points randomly distributed on the shape surface as
the input point cloud. Similar to ANSI, during training,
we also randomly perturb each data point along the surface
normal direction in [−0.01, 0.01] range. The normals are
also perturbed with random noise in a uniform range of
[−3, 3] degrees from their original direction. All the baseline

Input Pointnet++ DGCNN PointTransformer
SPFN p 47.38 53.83 58.15
SPFN p+n 69.01 73.41 70.14
ParseNet p 63.14 71.32 75.01
ParseNet p+n 73.53 82.14 76.13
Ours p 71.45 74.99 78.12
Ours p+n 76.10 85.24 80.22

Table 1: Segmentation mean IoU results of our method and
baseline approaches with different backbones on ABCParts
Dataset.

approaches share the same data preprocessing procedure
with our method.

Training Procedure Details. Network training of HPNet
consists of two stages. The first stage learns the Dense
Descriptor Module. Without normal as input, we use default
hyperparameters of network with batch size 32, initial
learning rate 1× 10−2. Learning rate reduces by the factor
of 10 when the validation performance convergence. The
experiment took 20 hours on a Tesla V100 GPU. With
normal as input, we use default hyperparameters of network
with batch size 8, initial learning rate 1×10−3. Learning rate
reduces by the factor of 2 when the validation performance
converges. The experiment on each dataset took 50 hours on
a Tesla V100 GPU.

Baseline Comparison. Previous baseline approaches used
different network backbones compared with our method.
To make fair comparison, we report the experimental
results under different backbones in Table 1. The results
demonstrate that our approach leads to noticeable perfor-
mance improvements over baseline methods (the absolute
improvements vary under different settings slightly). Note
that replacing PointNet++ in SPFN by DGCNN does not
violate that ParseNet is the top-performing baseline.

E. Visualization of Different Feature Combina-
tions

Here, we show more visualization results to continue to
study the impacts of different components of HPNet.

Figure 2 shows qualitative results for comparisons
between our approach without the consistency spectral
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Figure 2: Comparison between our approach without combining the consistency spectral descriptors(‘Ours-nc’) and our full
approach (‘Ours-full’).
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Figure 3: Comparison between our approach without combining the smoothness spectral descriptors(‘Ours-ns’) and our full
approach (‘Ours-full’).

descriptors and our full approach. When the model shows
accurate predictions of primitive parameters, combining
geometry consistency spectral descriptor can segment the
primitive patch more precisely (columns 2 and 4). This is
because of the points from the same primitive share nearly
the same primitive parameters. In this case, the geometry
consistency descriptor can also help merge two patches that
belong to the same primitive into one patch (columns 1, 3,
and 6). Moreover, when two different primitive patches are
erroneously merged, it can help separate them (columns 4
and 7).

Figure 3 shows more results that compare our approach
without the smoothness spectral descriptors with our full
approach. Besides capturing sharp edges between different

primitives, the smoothness spectral descriptor can also help
rectify two patches when their boundaries are smooth.
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